The velocity of the board relative to the ice is zero, since both are at rest.
<h3>What is relative velocity?</h3>
Relative velocity is the velocity of an object in relation to another reference object or point.
When two objects are travelling or moving with the same velocity in the same direction, the relative velocity one relative to the other is zero.
Also, when two objects are at rest, the relative velocity one relative to the other is zero.
Therefore, the velocity of the board relative to the ice is zero, since both are at rest.
Learn more about relative velocity at: brainly.com/question/24337516
#SPJ1
a) 0.321 ly
b) 0.321 light years is not far in astronomical terms. Alien life would need to transmit at tremendous power in order for their radio transmissions to be detectable. Their radio signal also needs to be stronger than background noise in order to be distinguishable. Therefore it is unlikely that radio transmissions from alien life will ever be detected.
Answer:
Electrical Resistance is a measure of the opposition to current flow in an electrical circuit
Types: variable resistance and set resistance
Explanation:
Parking lots with roads and concrete reduce infiltration. Infiltration is the process by which water penetrates the soil. Reducing the amount of water that enters the soil can eventually impact groundwater levels in some areas by decreasing it over time. Paved roads lead to increased surface runoff which increases the possibility of flooding in periods of heavy rainfall. This is known as urban flooding.
M = mass of the whale = 1000 kg
m = mass of the seal = 200 kg
V = initial velocity of whale before collision with the seal = 6.0 m/s
v = initial velocity of the seal before collision with the whale = 0 m/s
V' = final velocity of two sea creatures after collision = ?
Using conservation of momentum
M V + m v = (M + m) V'
inserting the above values in the equation
(1000 kg) (6.0 m/s) + (200 kg) (0 m/s ) = (1000 kg + 200 kg) V'
6000 kgm/s + 0 kgm/s = (1200 kg) V'
V' = (6000 kgm/s ) /(1200 kg)
V' = 5 m/s