Answer:
The options <u>(A) -</u>The rate law for a given reaction can be determined from a knowledge of the rate-determining step in that reaction's mechanism. and <u>(C) </u>-The rate laws of bimolecular elementary reactions are second order overall ,<u>is true.</u>
Explanation:
(A) -The rate law can only be calculated from the reaction's slowest or rate-determining phase, according to the first sentence.
(B) -The second statement is not entirely right, since we cannot evaluate an accurate rate law by simply looking at the net equation. It must be decided by experimentation.
(C) -Since there are two reactants, the third statement is correct: most bimolecular reactions are second order overall.
(D)-The fourth argument is incorrect. We must track the rates of and elementary phase that is following the reaction in order to determine the rate.
<u>Therefore , the first and third statement is true.</u>
Answer:
Solute = 5 mL; solution = 250 mL
Explanation:
The formula for percent by volume is

If you have 250 mL of a solution that is 2 % v/v,

If there is no change of volume on mixing,
Volume of solution = 250 mL
-Volume of solute = <u> </u><u>5</u><u> </u>
Volume of solvent = 245 mL
Answer:
Pb(NO₂)₂(aq) + 2 LiCl(aq) ⇒ PbCl₂(s) + 2 LiNO₂(aq)
Explanation:
Let's consider the reaction between aqueous lead (II) nitrite and aqueous lithium chloride to form solid lead (II) chloride and aqueous lithium nitrite.
Pb(NO₂)₂(aq) + LiCl(aq) ⇒ PbCl₂(s) + LiNO₂(aq)
This is a double displacement reaction. We will start balancing Cl by multiplying LiCl by 2.
Pb(NO₂)₂(aq) + 2 LiCl(aq) ⇒ PbCl₂(s) + LiNO₂(aq)
Now, we have to balance Li by multiplying LiNO₂ by 2.
Pb(NO₂)₂(aq) + 2 LiCl(aq) ⇒ PbCl₂(s) + 2 LiNO₂(aq)
The equation is now balanced.
When a female animal and a male see each other the male would show off and they woulf matr and make a baby then the babys will grow up and make more