1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kotykmax [81]
3 years ago
7

11. A cyclist accelerates from 0 m/s to 10 m/s in 3 seconds. What is his acceleration ? Is this acceleration higher than that of

a car which accelerates from 0 to 40 m/s in 8 seconds?​
Physics
1 answer:
Marat540 [252]3 years ago
6 0

a =  \frac{v - u}{t}

v = final velocity

u = initial velocity

t = time taken

the acceleration of the cyclist is

\frac{10 - 0}{3}  = 3.333333....

approximately 3.33 m/s^2

the acceleration of the car is

\frac{40 - 0 }{8}  = 5.0

5.0 m/s^2

5.0 > 3.33 \\ so \:  the \: answer  \: is \: no

You might be interested in
A supply bag is dropped from a rescue plane. After the bag falls for 3.2 seconds , what is the velocity of the bag?
loris [4]

Answer: -31.36 m/s

Explanation:

This is a problem of motion in one direction (specifically vertical motion), and the equation that best fulfills this approach is:

V_{f}=V_{o}+a.t  (1)

Where:

V_{f} is the final velocity of the supply bag

V_{o}=0 is the initial velocity of the supply bag (we know it is zero because we are told it was "dropped", this means it goes to ground in free fall)

a=g=-9.8m/s^{2} is the acceleration due gravity (the negtive sign indicates the gravity is downwards, in the direction of the center of the Earth)

t=3.2s is the time

Knowing this, let's solve (1):

V_{f}=0+(-9.8m/s^{2})(3.2s)  (2)

Finally:

V_{f}=-31.36m/s  Note the negative sign is because the direction of the bag is downwards as well.

8 0
2 years ago
I need answers and solvings to these questions​
den301095 [7]

1) The period of a simple pendulum depends on B) III. only (the length of the pendulum)

2) The angular acceleration is C) 15.7 rad/s^2

3) The frequency of the oscillation is C) 1.6 Hz

4) The period of vibration is B) 0.6 s

5) The diameter of the nozzle is A) 5.0 mm

6) The force that must be applied is B) 266.7 N

Explanation:

1)

The period of a simple pendulum is given by

T=2\pi \sqrt{\frac{L}{g}}

where

T is the period

L is the length of the pendulum

g is the acceleration of gravity

From the equation, we see that the period of the pendulum depends only on its length and on the acceleration of gravity, while there is no dependence on the mass of the pendulum or on the amplitude of oscillation. Therefore, the correct option is

B) III. only (the length of the pendulum)

2)

The angular acceleration of the rotating disc is given by the equation

\alpha = \frac{\omega_f - \omega_i}{t}

where

\omega_f is the final angular velocity

\omega_i is the initial angular velocity

t is the time elapsed

For the compact disc in this problem we have:

\omega_i = 0 (since it starts from rest)

\omega_f = 300 rpm \cdot \frac{2\pi rad/rev}{60 s/min}=31.4 rad/s is the final angular velocity

t = 2 s

Substituting, we find

\alpha = \frac{31.4-0}{2}=15.7 rad/s^2

3)

For a simple harmonic oscillator, the acceleration and the displacement of the system are related by the equation

a=-\omega^2 x

where

a is the acceleration

x is the displacement

\omega is the angular frequency of the system

For the oscillator in this problem, we have the following relationship

a=-100 x

which implies that

\omega^2 = 100

And so

\omega = \sqrt{100}=10 rad/s

Also, the angular frequency is related to the frequency f by

f=\frac{\omega}{2\pi}

Therefore, the frequency of this simple harmonic oscillator is

f=\frac{10}{2\pi}=1.6 Hz

4)

When the mass is hanging on the sping, the weight of the mass is equal to the restoring force on the spring, so we can write

mg=kx

where

m is the mass

g=9.8 m/s^2 is the acceleration of gravity

k is the spring constant

x = 8.0 cm = 0.08 m is the stretching of the spring

We can re-arrange the equation as

\frac{k}{m}=\frac{g}{x}=\frac{9.8}{0.08}=122.5

The angular frequency of the spring is given by

\omega=\sqrt{\frac{k}{m}}=\sqrt{122.5}=11.1 Hz

And therefore, its period is

T=\frac{2\pi}{\omega}=\frac{2\pi}{11.1}=0.6 s

5)

According to the equation of continuity, the volume flow rate must remain constant, so we can write

A_1 v_1 = A_2 v_2

where

A_1 = \pi r_1^2 is the cross-sectional area of the hose, with r_1 = 5 mm being the radius of the hose

v_1 = 4 m/s is the speed of the petrol in the hose

A_2 = \pi r_2^2 is the cross-sectional area of the nozzle, with r_2 being the radius of the nozzle

v_2 = 16 m/s is the speed in the nozzle

Solving for r_2, we find the radius of the nozzle:

\pi r_1^2 v_1 = \pi r_2^2 v_2\\r_2 = r_1 \sqrt{\frac{v_1}{v_2}}=(5)\sqrt{\frac{4}{16}}=2.5 mm

So, the diameter of the nozzle will be

d_2 = 2r_2 = 2(2.5)=5.0 mm

6)

According to the Pascal principle, the pressure on the two pistons is the same, so we can write

\frac{F_1}{A_1}=\frac{F_2}{A_2}

where

F_1 is the force that must be applied to the small piston

A_1 = \pi r_1^2 is the area of the first piston, with r_1= 2 cm being its radius

F_2 = mg = (1500 kg)(9.8 m/s^2)=14700 N is the force applied on the bigger piston (the weight of the car)

A_2 = \pi r_2^2 is the area of the bigger piston, with r_2= 15 cm being its radius

Solving for F_1, we find

F_1 = \frac{F_2A_1}{A_2}=\frac{F_2 \pi r_1^2}{\pi r_2^2}=\frac{(14700)(2)^2}{(15)^2}=261 N

So, the closest answer is B) 266.7 N.

Learn more about pressure:

brainly.com/question/4868239

brainly.com/question/2438000

#LearnwithBrainly

5 0
3 years ago
A cow runs left word 50 M to eat some apples then walks left word another 100 and to munch on some flowers the cows total travel
Lelechka [254]

Answer: velocity = -0.65 speed =0.65

Explanation:

Velocity =speed+direction speed =distance/time

5 0
3 years ago
A busy chipmunk runs back and forth along a straight line of acorns that has been set out between his burrow and a nearby tree.
saveliy_v [14]

Answer: a = 1.32m/s2

Therefore, the average acceleration is 1.32m/s2

Explanation:

Acceleration is the rate of change in the velocity per time

a = change in velocity/time

a = ∆v/t

average acceleration a = (v2 -v1)/t. ....1

Given;

Final velocity v2 = 1.63m/s

Initial velocity v1 = -1.15ms

time taken t = 2.11s

Substituting into eqn 1

a = [1.63 - (-1.15)]/2.11

a = (1.63+1.15)/2.11

a = 2.78/2.11

a = 1.32m/s2

Therefore, the average acceleration is 1.32m/s2

6 0
3 years ago
A hydrogen atom in a galaxy moving with a speed of 6.65×106 m/???? away from the Earth emits light with a wavelength of 5.13×10−
Mumz [18]

Answer:

The observed wavelength on Earth from that hydrogen atom is 5.24\times 10^{-7}\ m.

Explanation:

Given that,

The actual wavelength of the hydrogen atom, \lambda_a=5.13\times 10^{-7}\ m

A hydrogen atom in a galaxy moving with a speed of, v=6.65\times 10^6\ m/s

We need to find the observed wavelength on Earth from that hydrogen atom. The speed of galaxy is given by :

v=c\times \dfrac{\lambda_o-\lambda_a}{\lambda_a}

\lambda_o is the observed wavelength

\lambda_o=\dfrac{v\lambda_a}{c}+\lambda_a\\\\\lambda_o=\dfrac{6.65\times 10^6\times 5.13\times 10^{-7}}{3\times 10^8}+5.13\times 10^{-7}\\\\\lambda_o=5.24\times 10^{-7}\ m

So, the observed wavelength on Earth from that hydrogen atom is 5.24\times 10^{-7}\ m. Hence, this is the required solution.

8 0
2 years ago
Other questions:
  • Why is a football firm when it is inflated to its proper pressure
    8·1 answer
  • A poundal is the force required to accelerate a mass of 1 lbm at a rate of 1 ft/s2 , and a slug is the mass of an object that wi
    12·1 answer
  • Give a physical description of radio waves and compare and contrast it with the frequency, wavelength, energy and wave speed wit
    6·1 answer
  • The particles ejected from the sun during a coronal mass ejection is called
    12·1 answer
  • The electric field of an infinite charged plane is constant everywhere in space. true or false.
    10·1 answer
  • The electron's velocity at that instant is purely horizontal with a magnitude of 2 \times 10^5 ~\text{m/s}2×10 ​5 ​​ m/s then ho
    8·1 answer
  • Un objeto de 1 kg se mueve con una velocidad cambia 10m/s¿se ha realizado trabajo sobre el objeto?​
    8·1 answer
  • At maximum speed an airplane travels 1720 miles against the wind in 5 hours. Flying with the wind, the plane can travel the same
    7·2 answers
  • What is Darwin's theory of the origin of species?
    9·1 answer
  • 1. In the image below, the purple particles are protons and the white particles are neutrons. Which of the following equations m
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!