An organic compound in which a carbonyl group is bonded to two different carbon atoms is a ketone. The ketones are organic compounds in which a carbonyl group (C=O) is bonded to two carbon atom. A carbonyl group is a carbon-oxygen double bond. Ketones are of great importance in industry and in biology, <span>as solvents, polymer precursors, and pharmaceuticals.</span>
The top number of a portion is called its numerator whereas the bottom number is its denominator. So a Fraction is the quantity of shaded parts separated by the quantity of a balance of as demonstrated as follows: number of shaded parts is the numerator over the whole part which is the denominator.
Answer:
When substances do not mix thoroughly and evenly (like sand and gravel), the mixture is said to be heterogeneous. A heterogeneous mixture consists of visibly different substances. Another example of a mixture is salt dissolved in water.
Hope it helps!
Answer:
Molarity = 0.7 M
Explanation:
Given data:
Volume of KCl = 20 mL ( 0.02 L)
Molarity = 3.5 M
Final volume = 100 mL (0.1 L)
Molarity in 100 mL = ?
Solution:
Molarity = number of moles of solute / volume in litter.
First of all we will determine the number of moles of KCl available.
Number of moles = molarity × volume in litter
Number of moles = 3.5 M × 0.02 L
Number of moles = 0.07 mol
Molarity in 100 mL.
Molarity = number of moles / volume in litter
Molarity = 0.07 mol /0.1 L
Molarity = 0.7 M
<u>Answer:</u> The standard enthalpy change of the reaction is coming out to be -16.3 kJ
<u>Explanation:</u>
Enthalpy change is defined as the difference in enthalpies of all the product and the reactants each multiplied with their respective number of moles. It is represented as 
The equation used to calculate enthalpy change is of a reaction is:
![\Delta H_{rxn}=\sum [n\times \Delta H_f(product)]-\sum [n\times \Delta H_f(reactant)]](https://tex.z-dn.net/?f=%5CDelta%20H_%7Brxn%7D%3D%5Csum%20%5Bn%5Ctimes%20%5CDelta%20H_f%28product%29%5D-%5Csum%20%5Bn%5Ctimes%20%5CDelta%20H_f%28reactant%29%5D)
For the given chemical reaction:

The equation for the enthalpy change of the above reaction is:
![\Delta H_{rxn}=[(1\times \Delta H_f_{(MgCl_2(s))})+(2\times \Delta H_f_{(H_2O(g))})]-[(1\times \Delta H_f_{(Mg(OH)_2(s))})+(2\times \Delta H_f_{(HCl(g))})]](https://tex.z-dn.net/?f=%5CDelta%20H_%7Brxn%7D%3D%5B%281%5Ctimes%20%5CDelta%20H_f_%7B%28MgCl_2%28s%29%29%7D%29%2B%282%5Ctimes%20%5CDelta%20H_f_%7B%28H_2O%28g%29%29%7D%29%5D-%5B%281%5Ctimes%20%5CDelta%20H_f_%7B%28Mg%28OH%29_2%28s%29%29%7D%29%2B%282%5Ctimes%20%5CDelta%20H_f_%7B%28HCl%28g%29%29%7D%29%5D)
We are given:

Putting values in above equation, we get:
![\Delta H_{rxn}=[(1\times (-641.8))+(2\times (-241.8))]-[(1\times (-924.5))+(2\times (-92.30))]\\\\\Delta H_{rxn}=-16.3kJ](https://tex.z-dn.net/?f=%5CDelta%20H_%7Brxn%7D%3D%5B%281%5Ctimes%20%28-641.8%29%29%2B%282%5Ctimes%20%28-241.8%29%29%5D-%5B%281%5Ctimes%20%28-924.5%29%29%2B%282%5Ctimes%20%28-92.30%29%29%5D%5C%5C%5C%5C%5CDelta%20H_%7Brxn%7D%3D-16.3kJ)
Hence, the standard enthalpy change of the reaction is coming out to be -16.3 kJ