Answer:
Total Ionic equation:
H⁺(aq) + NO₃⁻ (aq) + Na⁺(aq) + OH⁻(aq) → H₂O(l) + Na⁺(aq) + NO₃⁻ (aq)
Explanation:
Chemical equation:
HNO₃ + NaOH → NaNO₃ + H₂O
Balanced chemical equation:
HNO₃(aq) + NaOH(aq) → NaNO₃(aq) + H₂O(l)
Total Ionic equation:
H⁺(aq) + NO₃⁻ (aq) + Na⁺(aq) + OH⁻(aq) → H₂O(l) + Na⁺(aq) + NO₃⁻ (aq)
Net ionic equation:
H⁺(aq) + OH⁻(aq) → H₂O(l)
The NO₃⁻ (aq) and Na⁺ (aq) are spectator ions that's why these are not written in net ionic equation. The water can not be splitted into ions because it is present in liquid form.
Spectator ions:
These ions are same in both side of chemical reaction. These ions are cancel out. Their presence can not effect the equilibrium of reaction that's why these ions are omitted in net ionic equation
If your using Plato the correct answer is (A. It accepts protons)
This answer should have four signifigant features
Explanation:
I had this on a test and got it right :D
Answer: 2 lone pairs, square planar
Explanation:
Using the VSEPR ( Valence Shell Electron Pair Repulsion)Theory
To calculate the number of lone pairs electron can be done using the formula;
Number of electrons = ½ (V+N-C+A)
V mean valency of the central atom
N means number of monovalent bonding atoms
C means charge on cation
A means charges on anion
Therefore, to calculate the number of lone pair electron C=A=0;
Number of electrons = ½ (8+4) = 12/2 = 6
Number of bonding pair = 4
Number of lone pairs of electron = 6-4 = 2
The hybridrization of the compound is sp3d2 because the number of electrons around the central atom is 6.
The geometry of the compound is square planar and this is because of the repulsion between the bonding pair of electrons and lone pair of electrons which causes the lone pair of electrons to lie in a perpendicular plane in order to acquire stability.