When solving a system by graphing you need to see where the lines intersect.
Below is a picture of these lines graphed. The green line is y = x +4 and the blue line is y = 4x - 1
The red dot represents the intersection is about (1, 5)
The original point is: (1.667, 5.667)
Hope this helped!
22.45 would be 22, and 90.32 would be 90
Your answer would be the last option, c = √(E/m).
We can see this when we rearrange the equation, as:
E = mc²
÷ m
E/m = c²
√
√(E/m) = c
So you got all the steps in rearranging correct :)
I hope this helps!
Answer:
Step-by-step explanation:
We'll take this step by step. The equation is
![8-3\sqrt[5]{x^3}=-7](https://tex.z-dn.net/?f=8-3%5Csqrt%5B5%5D%7Bx%5E3%7D%3D-7)
Looks like a hard mess to solve but it's actually quite simple, just do one thing at a time. First thing is to subtract 8 from both sides:
![-3\sqrt[5]{x^3}=-15](https://tex.z-dn.net/?f=-3%5Csqrt%5B5%5D%7Bx%5E3%7D%3D-15)
The goal is to isolate the term with the x in it, so that means that the -3 has to go. Divide it away on both sides:
![\sqrt[5]{x^3}=5](https://tex.z-dn.net/?f=%5Csqrt%5B5%5D%7Bx%5E3%7D%3D5)
Let's rewrite that radical into exponential form:

If we are going to solve for x, we need to multiply both sides by the reciprocal of the power:

On the left, multiplying the rational exponent by its reciprocal gets rid of the power completely. On the right, let's rewrite that back in radical form to solve it easier:
![x=\sqrt[3]{5^5}](https://tex.z-dn.net/?f=x%3D%5Csqrt%5B3%5D%7B5%5E5%7D)
Let's group that radicad into groups of 3's now to make the simplifying easier:
because the cubed root of 5 cubed is just 5, so we can pull it out, leaving us with:
which is the same as:
![x=5\sqrt[3]{25}](https://tex.z-dn.net/?f=x%3D5%5Csqrt%5B3%5D%7B25%7D)
Answer:
65
Step-by-step explanation:
they're going by 5s every time her score increases. hope I helped (: