Answer:
.b. It is one‐half as large as when n = 100.
Step-by-step explanation:
Given that a simple random sample of 100 batteries is selected from a process that produces batteries with a mean lifetime of 32 hours and a standard deviation of 3 hours.
i.e. s = 0.3
we obtain se of sample by dividing std devitation by the square root of sample size
i.e. s= 
when n =100 this = 0.3 and
when n =400 this equals 0.15
We find that when sample size is four times as large as original, std deviation becomes 1/2 of the original
Correction option is
.b. It is one‐half as large as when n = 100.
B. 74%
This is because the complement plus the original must equal 100%.
So...
100 - 26 = 74
Answer:
see below
Step-by-step explanation:
10^33/2
Rewriting the numerator as 10 * 10 ^ 32
10 * 10 ^32
--------------------
2
10/2 = 5
5 * 10 ^32
Therefore
10^33/2=5*10^32
Answer:
x=12
Step-by-step explanation:
Simplifying
30 + 4x + 2 = 8 + 6x
Reorder the terms:
30 + 2 + 4x = 8 + 6x
Combine like terms: 30 + 2 = 32
32 + 4x = 8 + 6x
Solving
32 + 4x = 8 + 6x
Solving for variable 'x'.
Move all terms containing x to the left, all other terms to the right.
Add '-6x' to each side of the equation.
32 + 4x + -6x = 8 + 6x + -6x
Combine like terms: 4x + -6x = -2x
32 + -2x = 8 + 6x + -6x
Combine like terms: 6x + -6x = 0
32 + -2x = 8 + 0
32 + -2x = 8
Add '-32' to each side of the equation.
32 + -32 + -2x = 8 + -32
Combine like terms: 32 + -32 = 0
0 + -2x = 8 + -32
-2x = 8 + -32
Combine like terms: 8 + -32 = -24
-2x = -24
Divide each side by '-2'.
x = 12
Simplifying
x = 12
Answer:
7.41, 7.6, 745
Step-by-step explanation: