Answer:
The voltage across the capacitor is 1.57 V.
Explanation:
Given that,
Number of turns = 10
Diameter = 1.0 cm
Resistance = 0.50 Ω
Capacitor = 1.0μ F
Magnetic field = 1.0 mT
We need to calculate the flux
Using formula of flux

Put the value into the formula


We need to calculate the induced emf
Using formula of induced emf

Put the value into the formula

Put the value of emf from ohm's law





We know that,


We need to calculate the voltage across the capacitor
Using formula of charge


Put the value into the formula


Hence, The voltage across the capacitor is 1.57 V.
I'm not sure but it might explode and make the wood catch fire
We want a sound wave with a wavelength of 0.52 meters or a natural fraction thereof. We'll work in MKS.
w = 0.52/n
That's length. We have speed 344 meters/second so w corresponds to a frequency of
f = 344 / w = n (344/.52)
f = 661.5 n Hertz
I don't really agree with how they're saying it, but all the fundamental talk is probably trying to tell us n=1,
Answer: 661.5 Hertz
Any multiple of that will also produce constructive interference; we can go to about n=30 before we're out of the audio range.
the soviet union was the first country.
Answer:
Explanation:
a )
Time period T = 1/3 s
angular velocity = 2π / T
= 2 x 3.14 x 3
ω = 18.84 radian / s
b )
Applying conservation of angular momentum
I₁ ω₁ = I₂ ω₂
I₁ / I₂ = ω₂ / ω₁
2 = ω₂ / ω
ω₂ = 2 ω
c )
(KE)initial = 1/2 I₁ ω²
(KE)final = 1/2 I₂ ω₂²
= 1/2 (I₁ / 2) (2ω)²
= I₁ ω²
c )
Change in rotational kinetic energy
= I₁ ω² - 1/2 I₁ ω²
= + 1/2 I₁ ω²
d )
This energy comes from the work done by centripetal force which is increased to increase the speed of rotation.