Nope, this is impossible because in order for a car to pass another, they the 55 mph car would have to be behind the 65 mph car (meaning that starting ahead of the 65 mph doesn't count as pass). Assuming that they both drive for one hour, it is impossible because the first will cover a distance of 65 mi and the second would cover a distance of 55 mi. One is obviously ahead of the other and is therefore impossible for the slow one to pass the first one unless the slow car keeps driving after an hour. In that case, it would take approximately 11 minutes for it to pass the other car. This was found by finding the distance needed to pass the first car : 65 - 55 = 10 mi and converted using 1 hr/ 55 mi = .18181818 hr x 60 min/ 1 hr = 11 seconds
I hope this helps :)
Answer:
The force will be 
Explanation:
Let's use the centripetal force equation.

Where:
m is the mass of the bunch of bananas
ω is the angular speed
R is the radius
Now, 1 rev every 4 seconds or 0.25 rev/sec is the angular speed, but we need to write this speed in rad per second.

FInally, the force will be:



I hope it helps you!
Answer:
but where are the options?
Answer:

Explanation:
Mass: M, Length: L.

The formula that gives center of mass is

In the case of a non-uniform mass density, this formula converts to

where the denominator is the total mass and the nominator is the mass times position of each point on the rod.
We have to integrate the mass density over the total rod in order to find the total mass. Likewise, we have to integrate the center of mass of each point (xσ(x)) over the total rod. And if we divide the integrated center of mass to the total mass, we find the center of mass of the rod:

Here x's are cancelled. Otherwise, the denominator would be zero.

Which one are you talking about bc there's a couple