Answer:
0.37 m/s to the left
Explanation:
Momentum is conserved. Initial momentum = final momentum.
m₁ u₁ + m₂ u₂ = m₁ v₁ + m₂ v₂
Initially, both the fisherman/boat and the package are at rest.
0 = m₁ v₁ + m₂ v₂
Plugging in values and solving:
0 = (82 kg + 112 kg) v + (15 kg) (4.8 m/s)
v = -0.37 m/s
The boat's velocity is 0.37 m/s to the left.
Answer:
Explanation:
7a) t = d/v = 100/45cos14.5 = 2.29533...= 2.30 s
7b) h = ½(9.81)(2.29533/2)² = 6.46056... = 6.45 m
or
h = (45sin14.5)² / (2(9.81)) = 6.47 m
which rounds to the same 6.5 m when limiting to the two significant digits of the initial velocity.
Answer:
Driving force increases, friction forces increase, the driving force is bigger than friction 12.
Explanation:
It’s D because kinetic energy is the energy of motion
B4 the tackle:
<span>The linebacker's momentum = 115 x 8.5 = 977.5 kg m/s north </span>
<span>and the halfback's momentum = 89 x 6.7 = 596.3 kg m/s east </span>
<span>After the tackle they move together with a momentum equal to the vector sum of their separate momentums b4 the tackle </span>
<span>The vector triangle is right angled: </span>
<span>magnitude of final momentum = √(977.5² + 596.3²) = 1145.034 kg m/s </span>
<span>so (115 + 89)v(f) = 1145.034 ←←[b/c p = mv] </span>
<span>v(f) = 5.6 m/s (to 2 sig figs) </span>
<span>direction of v(f) is the same as the direction of the final momentum </span>
<span>so direction of v(f) = arctan (596.3 / 977.5) = N 31° E (to 2 sig figs) </span>
<span>so the velocity of the two players after the tackle is 5.6 m/s in the direction N 31° E </span>
<span>btw ... The direction can be given heaps of different ways ... N 31° E is probably the easiest way to express it when using the vector triangle to find it</span>