Allele frequencies are unaffected by assortative mating, but genotype frequencies .
<h3>Assortative mating: </h3>
Individuals with similar phenotypes and genotypes mate with others more frequently than is anticipated under a random mating pattern in assortative mating, which is a mating pattern and a type of sexual selection.
<h3>Frequencies of genotypes:</h3>
A population's genotype frequency is calculated by dividing the number of people having a particular genotype by the overall population size. The genotype frequency in population genetics is the frequency or ratio (i.e., 0 f 1) among genotypes inside a population.
<h3>The frequency for alleles in biology:</h3>
The term "allele frequency" describes the prevalence of an allele in a population. It is calculated by calculating the number of times the allele occurs in the population and dividing by the sum of all the gene copies.
To know more about Assortative mating visit:
brainly.com/question/28238408
#SPJ4
Speed = (distance covered) / (time to cover the distance)
= ( 8.45 km) / (0.65 hr)
= (8.45 / 0.65) km/hr
= 13 km/hr
I do not understand the full question, however if you are wondering which way Simone and the dog will go, they will go right because the force of 34 N from the dog is higher than the force of 16 N from Simone.
the answer might be 2.3 kilos
Answer:
N = 3.54 * 10²³ atoms
Explanation:
The formula to apply here is the idea gas law;
PV = nRT where ;
P= pressure of the gas= 1.013 * 10⁵ Pa
V= volume of the gas = 4/3 * 3.14 *0.15³= 0.01414 m³
n= amount of a substance = ?
R= ideal gas constant= 8.314
T= temperature= 293 K
Applying the values to the formula;
PV = nRT
1.013 * 10⁵ * 0.01414 = n * 8.314*293
n= 1.013 * 10⁵ * 0.01414 / 8.314*293
n= 0.588 moles
1 mole = 6.022 * 10²⁷ atoms/ mole
0.588 moles = 0.588 * 6.022 * 10²⁷
N = 3.54 * 10²³ atoms