1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
agasfer [191]
3 years ago
13

When does a object have the greatest kinetic energy?

Physics
1 answer:
Rufina [12.5K]3 years ago
8 0
When Object is at zero height, and there is no potential energy possess by the object then it exerts Greatest Kinetic energy in it's whole Journey

Hope this helps!
You might be interested in
Visit this website and locate the element mercury, whose chemical symbol is Hg. Click on the square to read about the history, p
Irina-Kira [14]
We simply asked to name three uses for mercury.
The most common and well-known use of mercury is the production of thermometers. It's property to stay liquid at room temperature makes it ideal for a temperature indicator. However, the use of mercury is thermometers has been phased out due to health hazards.
It is also used to form an amalgam which is the result of its combination with silver or gold. Mercury has been used to mine gold and silver. This application has also been phased out.
Today's use of mercury includes mercury-vapor lamps which are the bright lamps used in high-ways.

6 0
2 years ago
Read 2 more answers
An electron in a vacuum is first accelerated by a voltage of 51400 V and then enters a region in which there is a uniform magnet
zimovet [89]

Answer:

       F = 8.6 10⁻¹² N

Explanation:

For this exercise we use the law of conservation of energy

Initial. Field energy with the electron at rest

         Em₀ = U = q ΔV

Final. Electron with velocity, just out of the electric field

         Emf = K = ½ m v²

          Em₀ = Emf

          e ΔV = ½ m v²

          v =√ 2 e ΔV / m

          v = √(2 1.6 10⁻¹⁹ 51400 / 9.1 10⁻³¹)

           v = √(1.8075 10¹⁶)

           v = 1,344 10⁸ m / s

Now we can use the equation of the magnetic force

         F = q v x B

Since the speed and the magnetic field are perpendicular the force that

        F = e v B

        F = 1.6 10⁻¹⁹  1.344 10⁸ 0.4

       For this exercise we use the law of conservation of energy

Initial. Field energy with the electron at rest

         Emo = U = q DV

Final. Electron with velocity, just out of the electric field

         Emf = K = ½ m v2

          Emo = Emf

          .e DV = ½ m v2

          .v = RA 2 e DV / m

          .v = RA (2 1.6 10-19 51400 / 9.1 10-31)

           .v = RA (1.8075 10 16)

           .v = 1,344 108 m / s

Now we can use the equation of the magnetic force

         F = q v x B

Since the speed and the magnetic field are perpendicular the force that

        F = e v B

       F = 1.6 10-19 1,344 108 0.4

       F = 8.6 10-12 N

5 0
2 years ago
A circuit component with a high resistance will have a low electric current.
Zepler [3.9K]
You haven't said what 'high' resistance or 'low' current means, so there's way not enough info to nail the statement as true or false. The most precise answer is "certainly could be but not necessarily". Anyway, the current in the circuit depends on BOTH the resistance AND the voltage. So without knowing the voltage too, you can't say anything about the current.
6 0
3 years ago
A 0.15 kg project hits the ground with a speed of 11 m/s. The project comes to rest in 0.015 seconds. What is the net force?
Blababa [14]

Answer:

Explanation:

ACCORDING TO NEWTONS SECOND LAW;

F = mass * acceleration

F = m(v-u/t)

m is the mass = 0.15kg

v is the final velocity = 11m/s

u is the initial velocity = 0m/s

t is the time = 0.015

Substitute;

F = 0.15(11-0)/0.015

F = 0.15(11)/0.015

F = 1.65/0.015

F = 110N

Hence the net force is 110N

4 0
2 years ago
The radius k of the equivalent hoop is called the radius of gyration of the given body. Using this formula, find the radius of g
Morgarella [4.7K]

Here is the full question:

The rotational inertia I of any given body of mass M about any given axis is equal to the rotational inertia of an equivalent hoop about that axis, if the hoop has the same mass M and a radius k given by:  

k=\sqrt{\frac{I}{M} }

The radius k of the equivalent hoop is called the radius of gyration of the given body. Using this formula, find the radius of gyration of (a) a cylinder of radius 1.20 m, (b) a thin spherical shell of radius 1.20 m, and (c) a solid sphere of radius 1.20 m, all rotating about their central axes.

Answer:

a) 0.85 m

b) 0.98 m

c) 0.76 m

Explanation:

Given that: the radius of gyration  k=\sqrt{\frac{I}{M} }

So, moment of rotational inertia (I) of a cylinder about it axis = \frac{MR^2}{2}

k=\sqrt{\frac{\frac{MR^2}{2}}{M} }

k=\sqrt{{\frac{MR^2}{2}}* \frac{1}{M} }

k=\sqrt{{\frac{R^2}{2}}

k={\frac{R}{\sqrt{2}}

k={\frac{1.20m}{\sqrt{2}}

k = 0.8455 m

k ≅ 0.85 m

For the spherical shell of radius

(I) = \frac{2}{3}MR^2

k = \sqrt{\frac{\frac{2}{3}MR^2}{M}  }

k = \sqrt{\frac{2}{3} R^2}

k = \sqrt{\frac{2}{3} }*R

k = \sqrt{\frac{2}{3}}  *1.20

k = 0.9797 m

k ≅ 0.98 m

For the solid sphere of  radius

(I) = \frac{2}{5}MR^2

k = \sqrt{\frac{\frac{2}{5}MR^2}{M}  }

k = \sqrt{\frac{2}{5} R^2}

k = \sqrt{\frac{2}{5} }*R

k = \sqrt{\frac{2}{5}}  *1.20

k = 0.7560

k ≅ 0.76 m

6 0
3 years ago
Other questions:
  • An 85 kg object is moving at a constant speed of 15 m/s in a circular path, which has a radius of 20 meters. What centripetal fo
    14·1 answer
  • What is light intensity? ​
    11·2 answers
  • What are the similarity’s and differences of scalar and vector quantity’s?
    9·1 answer
  • What is the diffrence between fundamental and derived quantity . 2 diffrences please<br>​
    15·1 answer
  • If the length of a ramp is increased, what will happen to the input force?
    10·1 answer
  • ¿Qué es una vibración?
    11·1 answer
  • A negative body image can affect your fitness because being healthy asks you to keep
    7·1 answer
  • Four examples of second class levers​
    8·1 answer
  • An object is moving in a straight line with a constant acceleration. Its position is measured at three different times, as shown
    5·1 answer
  • The power of a lens is 4. 0 diopters and its diameter is 5. 0 cm. what is the focal length of this lens?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!