1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
3241004551 [841]
4 years ago
7

To meet the productivity goal, you must move 75 units of product per hour. You have moved 30 units of product in 30 minutes. How

many units of product will you need to move per minute for the remainder of the hour to meet the productivity goal?
Physics
1 answer:
9966 [12]4 years ago
4 0

Answer:

1.5 unit of product per min

Explanation:

30 units of product was moved in 30 minutes.

Number of units left = Total number of units-number of units moved

                                =75-30 =45 units

45 units is available to be moved for the rest 30 min. To be able to achieve this goal of 75 units of product per hour.

45/30 amount of units must be moved in 1 min

=1.5 unit per min

You might be interested in
Calculate the total displacement of a mouse walking along a ruler, if it begins at the x=5cm, and then does the following: It wa
Lana71 [14]
<span>To begin, the mouse walks from 5 to 12 cm, for a displacement of 7 cm. Next, it walks 8 cm in the opposite direction, for a total displacement of (7 + [-8]) or (-1) cm. This leaves the mouse on 4 cm, and then it walks from there to the 7cm location, for a displacement of 7-4 or +3 cm. Adding 3cm to -1cm gives a final displacement of +2cm.</span>
6 0
4 years ago
Compute your average velocity in the following two cases: (a) You walk 50.2 m at a speed of 2.21 m/s and then run 50.2 m at a sp
Readme [11.4K]

Answer:

a) 2.87 m/s

b) 3.23 m/s

Explanation:

The avergare velocity can be found dividing the length traveled d by the total time t.

a)

For the first part we easily know the total traveled length which is:

d = 50.2 m + 50.2 m = 100.4 m

The time can be found dividing the distance by the velocity:

t1 = 50.2 m / 2.21 m/s = 22.7149 s

t2 = 50.2 m / 4.11 m/s = 12.2141 s

t = t1 +t2 = 34.9290 s

Therefore, the average velocity is:

v = d/t =2.87 m/s

b)

Here we can easily know the total time:

t = 1 min + 1.16 min = 129.6 s

Now the distance wil be found multiplying each velocity by the time it has travelled:

d1 = 2.21 m/s * 60 s = 132.6 m

d2 = 4.11 m/s *(1.16 * 60 s) = 286.056 m

d = 418.656 m

Therefore, the average velocity is:

v = d/t =3.23 m/s

5 0
3 years ago
Which statement best describes the atoms of elements that form compounds by covalent bonding?
k0ka [10]

Answer:

they share electrons between them.

Explanation:

taking the test rn lol i think its right

4 0
3 years ago
Who actually asked Abraham to sacrifice his son?
pochemuha

I think god did ??? I searched it up okay

7 0
2 years ago
Read 2 more answers
Un the way to the moon, the Apollo astro-
kherson [118]

Answer:

Distance =  345719139.4[m]; acceleration = 3.33*10^{19} [m/s^2]

Explanation:

We can solve this problem by using Newton's universal gravitation law.

In the attached image we can find a schematic of the locations of the Earth and the moon and that the sum of the distances re plus rm will be equal to the distance given as initial data in the problem rt = 3.84 × 108 m

r_{e} = distance earth to the astronaut [m].\\r_{m} = distance moon to the astronaut [m]\\r_{t} = total distance = 3.84*10^8[m]

Now the key to solving this problem is to establish a point of equalisation of both forces, i.e. the point where the Earth pulls the astronaut with the same force as the moon pulls the astronaut.

Mathematically this equals:

F_{e} = F_{m}\\F_{e} =G*\frac{m_{e} *m_{a}}{r_{e}^{2}  } \\

F_{m} =G*\frac{m_{m}*m_{a}  }{r_{m} ^{2} } \\where:\\G = gravity constant = 6.67*10^{-11}[\frac{N*m^{2} }{kg^{2} } ] \\m_{e}= earth's mass = 5.98*10^{24}[kg]\\ m_{a}= astronaut mass = 100[kg]\\m_{m}= moon's mass = 7.36*10^{22}[kg]

When we match these equations the masses cancel out as the universal gravitational constant

G*\frac{m_{e} *m_{a} }{r_{e}^{2}  } = G*\frac{m_{m} *m_{a} }{r_{m}^{2}  }\\\frac{m_{e} }{r_{e}^{2}  } = \frac{m_{m} }{r_{m}^{2}  }

To solve this equation we have to replace the first equation of related with the distances.

\frac{m_{e} }{r_{e}^{2}  } = \frac{m_{m} }{r_{m}^{2} } \\\frac{5.98*10^{24} }{(3.84*10^{8}-r_{m}  )^{2}  } = \frac{7.36*10^{22}  }{r_{m}^{2} }\\81.25*r_{m}^{2}=r_{m}^{2}-768*10^{6}* r_{m}+1.47*10^{17}  \\80.25*r_{m}^{2}+768*10^{6}* r_{m}-1.47*10^{17} =0

Now, we have a second-degree equation, the only way to solve it is by using the formula of the quadratic equation.

r_{m1,2}=\frac{-b+- \sqrt{b^{2}-4*a*c }  }{2*a}\\  where:\\a=80.25\\b=768*10^{6} \\c = -1.47*10^{17} \\replacing:\\r_{m1,2}=\frac{-768*10^{6}+- \sqrt{(768*10^{6})^{2}-4*80.25*(-1.47*10^{17}) }  }{2*80.25}\\\\r_{m1}= 38280860.6[m] \\r_{m2}=-2.97*10^{17} [m]

We work with positive value

rm = 38280860.6[m] = 38280.86[km]

<u>Second part</u>

<u />

The distance between the Earth and this point is calculated as follows:

re = 3.84 108 - 38280860.6 = 345719139.4[m]

Now the acceleration can be found as follows:

a = G*\frac{m_{e} }{r_{e} ^{2} } \\a = 6.67*10^{11} *\frac{5.98*10^{24} }{(345.72*10^{6})^{2}  } \\a=3.33*10^{19} [m/s^2]

6 0
3 years ago
Other questions:
  • Meg walks 2 m from her desk to the teacher's desk. From the teacher's desk, she then walks 4 m in the opposite direction to the
    12·2 answers
  • Regions around the nucleus where electrons are most likely to be found are called
    13·2 answers
  • Need help with 4 &amp;5 please help
    10·1 answer
  • The two pucks of equal mass did not move linearly (they came to a stop) after the collision due to the conservation of linear mo
    9·1 answer
  • A pilot flies in a straight path for 1 hour and 30 min. she then makes a course correction, heading 10 degrees to the right of h
    7·1 answer
  • Two people push a box, both in the same
    8·1 answer
  • Is torque only produced when the force is applied perpendicular to the moment arm?
    14·2 answers
  • 2. A hammer hits a nail with a force of 50 N into some wood. The area of the point of the nail is 0.02 cm2. What is the pressure
    6·2 answers
  • The unit of area is derived unit why​
    6·2 answers
  • When an object slides,there is less friction than when it rolls
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!