Answer:
The final velocity of the object is,
= 27 m/s
Explanation:
Given,
The acceleration of the object, a = 1000 m/s²
The initial displacement of the object,
= 0 m
The final displacement of the object,
= 0.75 m
The initial velocity of the object will be,
= o m/s
The final velocity of the object,
= ?
The average velocity of the object,
v = (
-
)/ t
= 0.75 / t
The acceleration is given by the relation
a = v / t
1000 m/s² = 0.75 / t²
t² = 7.5 x 10⁻⁴
t = 0.027 s
Using the I equation of motion,
= u + at
Substituting the values
= 0 + 1000 x 0.027
= 27 m/s
Hence, the final velocity of the object is,
= 27 m/s
Answer:
The answer to this question can be defined as follows:
Explanation:
Therefore the 4th harmonicas its node is right and over the pickup so, can not be captured from 16.25, which is 1:4 out of 65. Normally, it's only conceptual for the certain harmonic, this will be low, would still be heard by the catcher.
Instead, every harmonic node has maximum fractions along its string; the very first node is the complete string length and the second node is half a mile to the third node, which is one-third up and so on.
Answer:
The value of F= - 830 N
Since the force is negative, it implies direction of the force applied was due south.
Explanation:
Given data:
Mass = 1000-kg
Distance, d = 240 m
Initial velocity, v1 = 20.0 m/s
Final velocity, v2 = 0 (since the car came to rest after brake was applied)
v2²= v1² + 2ad (using one of the equation of motion)
0= 20² + (2 x a x 240)
0= 400 + 480 a
a = - 400/480
a = - 0.83 m/s²
Then, imputing the value of a into
F = ma
F = 1000 kg x ( - 0.83 m/s²)
F= - 830 N
The car was driving toward the north, and since the force is negative, it implies direction of the force applied was due south.