<span>So you have composed two functions,
</span><span>h(x)=sin(x) and g(x)=arctan(x)</span>
<span>→f=h∘g</span><span>
meaning
</span><span>f(x)=h(g(x))</span>
<span>g:R→<span>[<span>−1;1</span>]</span></span>
<span>h:R→[−<span>π2</span>;<span>π2</span>]</span><span>
And since
</span><span>[−1;1]∈R→f is defined ∀x∈R</span><span>
And since arctan(x) is strictly increasing and continuous in [-1;1] ,
</span><span>h(g(]−∞;∞[))=h([−1;1])=[arctan(−1);arctan(1)]</span><span>
Meaning
</span><span>f:R→[arctan(−1);arctan(1)]=[−<span>π4</span>;<span>π4</span>]</span><span>
so there's your domain</span>
Answer:
no
Step-by-step explanation:
there is not one point that is very distant from all of the other ones
<h3>
Answer: 4</h3>
========================================================
Work Shown:

Note in step 2, I factored each number in the square root to pull out the largest perfect square factor. From there, I used the rule that
to break up the roots.
answer:
the answer is -3 and 8
Step-by-step explanation:
we will place -3 in the equation
(x+3)(x-x)=0
(-3+3)=0 (because -3+3 will cut down together)
we will place two 8(eights) in the equation
(8-8)=0
final answer is
(0)(0)=0
so -3 and 8 fits well in the equation
Esta estrategia se puede aplicar sumando 15,75 + 0,25, –1,8 + –0,20, 3,5 + 12,5 y 2,62 + 7,38 antes de sumar el tercer número dado en cada caso.
<h3>¿En qué consiste está estrategia?</h3>
La estrategia propuesta consiste en sumar dos números decimales que den como resultado un número entero antes de sumar el tercer número decima. Por ejemplo si teneos 1,4 + 0,6 + 1,2, se debe sumar primero 1,4 + 0,6 lo que es igual a 2 antes de sumar el 1,2.
<h3>¿Por qué utilizar esta estrategia?</h3>
Este estrategia es beneficiosa porque facilita sumar números decimales.
<h3>¿Cómo aplicar está estrategia?</h3>
- 15,75 + 1,2 + 0,25 = 16 (0,25+15,75) + 1,2 = 17,2
- (–1,8) + 2,45 + (–0,20) = -2 (-1,8-0,20) + 2,45 = 0,45
- 3,5 + 11,8 + 12,5 = 16 (12,5+3,5) +11,8 = 27.8
- 7,38 – 1,5 + 2,62 = 10 (7,38+2,62) + 2,62 = 12,62
Aprenda más sobre números decimales en: brainly.com/question/24620232
#SPJ1