The amount of current required to produce 75. 8 g of iron metal from a solution of aqueous iron (iii)chloride in 6. 75 hours is 168.4A.
The amount of Current required to deposit a metal can be find out by using The Law of Equivalence. It states that the number of gram equivalents of each reactant and product is equal in a given reaction.
It can be found using the formula,
m = Z I t
where, m = mass of metal deposited = 75.8g
Z = Equivalent mass / 96500 = 18.6 / 96500 = 0.0001
I is the current passed
t is the time taken = 75hour = 75 × 60 = 4500s
On subsituting in above formula,
75.8 = E I t / F
⇒ 75.8 = 0.0001 × I × 4500
⇒ I = 168.4 Ampere (A)
Hence, amount of current required to deposit a metal is 168.4A.
Learn more about Law of Equivalence here, brainly.com/question/13104984
#SPJ4
The answer is: <span>Light strikes a beautiful white perch under water. This light is reflected back to your eyes allowing you to see the fish. As the light left the water it changes speed causing the light to bend away from the normal.
Hope this helps!
(got answer from </span>https://quizlet.com/5474123/chapter-13-light-flash-cards/ if you need more help)
Answer:
Copper(II) chloride (CuCl2) reacts with several metals to produce copper metal or copper(I) chloride (CuCl) with oxidation of the other metal.
Explanation:
Answer:
Option (2)
Explanation:
Since the amount of each sample is the same, we are looking for the metal with the greatest density, which is copper.
Answer: Ethyl Ethanoate can be used as a developing solvent. It’s safer.
Explanation:Di ethyl ether should be carefully used because it’s highly flammable and intoxicating when inhaled and can cause explosions because of its high reactivity to air and light.