To determine the empirical formula and the molecular formula of the compound, we assume a basis of the compound of 100 g. We do as follows:
Mass Moles
K 52.10 52.10/39.10 = 1.33 1.33/1.32 ≈ 1
C 15.8 15.8/12 = 1.32 1.32/1.32 ≈ 1
O 32.1 32.1 / 16 = 2.01 2.01/1.32 ≈ 1.5
The empirical formula would most likely be KCO.
The molecular formula would be K2C2O3.
Answer:
filtration is the process of using a filter to remove solids from liquids or gasses.
Example:
an example of this is tea.
Answer:
D. It is converted into kinetic energy.
Explanation:
When a book is dropped from a desk to the floor, the potential energy of the book is converted to kinetic energy as it falls.
- Potential energy of a body is the energy due to the position of the body.
- At a particular height, the potential energy is maximum.
- A body with mass and moving with velocity will have kinetic energy
- As the book drops through the height, to conserve energy, the potential energy is converted to kinetic energy.
Boyle Law says “the pressure of fixed amount of ideal gas which is at constant temperature is
inversely proportional to its volume".<span>
P = 1/V
<span>Where, P is pressure of the ideal gas and V is volume of the ideal gas.</span>
<span>For two situations, this law can be added as;
P</span>₁V₁ = P₂V₂<span>
</span><span>14 lb/in² x V₁ = 70 lb/in² x 500 mL</span><span>
</span><span>V₁ =
2500 mL</span><span>
Hence, the needed volume of atmospheric air = 2500
mL
<span>Here, we made two </span>assumptions. They are,
1. The
atmospheric air acts as ideal gas.
2.
Temperature is a constant.
<span>We didn't convert the units to SI units since
converting volume and pressure are products of two numbers, they will cut off. </span></span></span>