It is overhead at the equator, it is because the sun ray’s
will be moving vertically as this will be directed at the equator. It is
because if it moves vertically, it will hit or overhead the equator and this
usually happens in spring and fall.
Answer
(C).
When there is an angle between the two directions, the cosine of the angle must be considered.
Step by step Solution
The work done by a force is defined as the product of the force and the distance traveled in the direction of motion.
The first answer "Only the component of the force perpendicular to the motion is used to calculate the work" is wrong because, the force perpendicular to motion does no work.
The second choice "If the force acts in the same direction as the motion, then no work is done" is wrong because the work in the direction of the force is
.
Fourth answer "A force at a right angle to the motion requires the use of the sine of the angle" is wrong because the
meaning that there is no work done in the direction perpendicular to the motion.
The third answer" When there is an angle between the two directions, the cosine of the angle must be considered." is correct because the work is calculated using the force in the direction of the motion. The magnitude of this force is 
Answer:
The car would travel after applying brakes is, d = 14.53 m
Explanation:
Given that,
The time taken to apply brakes fully is, t = 0.5 s
The velocity of the car, v = 29.06 m/s
The distance traveled by the car in 0.5 s, d = ?
The relation between the velocity, displacement, and time is given by the formula
d = v x t m
Substituting the values in the above equation,
d = 29.06 m/s x 0.5 s
= 14.53 m
Therefore, the car would travel after applying brakes is, d = 14.53 m
Answer: 3.33 m/s
Explanation:
Assuming the questions is to convert 12 km/h to meter per second (m/s), let's begin:
In order to make the conversion, we have to know the following:

And:

Keeping this in mind, we can make the conversion:

Then:
