Answer:
Explanation:
Initial separation of plate = d
final separation = 2d
The capacitance of the capacitor will reduce from C to C/2 because
capacitance = ε A / d
d is distance between plates.
As the batteries are disconnected , charge on the capacitor becomes fixed .
Initial charge on the capacitor
= Capacitance x potential difference
Q = C ΔV
Final charge will remain unchanged
Final charge = C ΔV
Final capacitance = C/2
Final potential difference = charge / capacitance
= C ΔV / C/2
= 2 ΔV
Potential difference is doubled after the pates are further separated.
The force of gravity the masses exert on each other. If one of the masses is doubled , the force of gravity between the objects is doubled. Increases , the force of gravity decreases.
They will be travelling slower than 10mph.
if they were travelling at the same speed then they would stay an equal distance apart.
if they were travelling fatser then they would be getting further away more quickly than Bobby is catching up.
maybe they are travelling at 5mph but I'd say it's a safer option to chose under 10mph
Answer:
0.3 m
Explanation:
Initially, the package has both gravitational potential energy and kinetic energy. The spring has elastic energy. After the package is brought to rest, all the energy is stored in the spring.
Initial energy = final energy
mgh + ½ mv² + ½ kx₁² = ½ kx₂²
Given:
m = 50 kg
g = 9.8 m/s²
h = 8 sin 20º m
v = 2 m/s
k = 30000 N/m
x₁ = 0.05 m
(50)(9.8)(8 sin 20) + ½ (50)(2)² + ½ (30000)(0.05)² = ½ (30000)x₂²
x₂ ≈ 0.314 m
So the spring is compressed 0.314 m from it's natural length. However, we're asked to find the additional deformation from the original 50mm.
x₂ − x₁
0.314 m − 0.05 m
0.264 m
Rounding to 1 sig-fig, the spring is compressed an additional 0.3 meters.