The gravitational force between two objects is given by:

where
G is the gravitational constant
m1 and m2 are the masses of the two objects
r is the separation between the two objects
The distance of the telescope from the Earth's center is

, the gravitational force is

and the mass of the Earth is

, therefore we can rearrange the previous equation to find m2, the mass of the telescope:
The process of flask becoming cold is due to endothermic reaction.
Answer: Option B
<u>Explanation:</u>
So two kinds of heat transfer can be possible in any chemical reaction. If the sample is considered as system and the sample container is considered as the surrounding, then heat transfer can occur between them.
If the heat is transferred from the surrounding to the system , then it is an endothermic reaction. And in those cases, the sample holder will be becoming colder. This is because the heat from the surrounding that is the container will be utilized to complete the reaction.
While when there is transfer of heat from the system to surrounding , it will be exothermic reaction and the beaker will be getting hot in this process. So in the present case, the container is becoming cold because of occurrence of endothermic process.
Answer:
P = 2 pi R / v period of space station
F / m = v^2 / R centripetal force per unit of mass
So F / m = 4 pi^2 R^2 / (P^2 * R) = 4 pi^2 R / P^2
Also, F / m = 9.8 m/s^2 earth's gravitational attraction
So 9.8 = 4 pi^2 R / P^2 or R = 9.8 P^2 / 4 * pi^2) = 195 m
Or D = 2 R = 390 m the diameter required
<em>It is the process in which green plants make their food through a green pigment known as Chlorophyll by using sunlight, Carbon-dioxide and water</em>. <em>The result comes out with the formation of Oxygen as a byproduct. But in night they also respire like animals and photosynthesis does not occur. Photo means light and synthesis means manufacture.</em>