Answer:
C₆H₈O₆
Explanation:
First off, the<u> percent of oxygen by mass</u> of vitamin C is:
- 100 - (40.9+4.58) = 54.52 %
<em>Assume we have one mol of vitamin C</em>. Then we would have <em>180 grams</em>, of which:
- 180 * 40.9/100 = 73.62 grams are of Carbon
- 180 * 4.58/100 = 8.224 grams are of Hydrogen
- 180 * 54.52/100 = 98.136 grams are of Oxygen
Now we <u>convert each of those masses to moles</u>, using the <em>elements' respective atomic mass</em>:
- C ⇒ 73.62 g ÷ 12 g/mol = 6.135 mol C ≅ 6 mol C
- H ⇒ 8.224 g ÷ 1 g/mol = 8.224 mol H ≅ 8 mol H
- O ⇒ 98.136 g ÷ 16 g/mol = 6.134 mol O ≅ 6 mol O
So the molecular formula for vitamin C is C₆H₈O₆
The group on the periodic table that would have 0 electronegativity due to the fact that their valence shell is full, i.e, have a full octet would be the inert or noble gases. They have a total of 8 electrons in their valence shell and are thus inert and cannot strongly attract electrons toward itself, from neighbouring atom electrons as it does not need to.
We are given
0.2 M HCHO2 which is formic acid, a weak acid
and
0.15 M NaCHO2 which is a salt which can be formed by reacting HCHO2 and NaOH
The mixture of the two results to a basic buffer solution
To get the pH of a base buffer, we use the formula
pH = 14 - pOH = 14 - (pKa - log [salt]/[base])
We need the pKa of HCO2
From, literature, pKa = 1.77 x 10^-4
Substituting into the equation
pH = 14 - (1.77 x 10^-4 - log 0.15/0.2)
pH = 13.87
So, the pH of the buffer solution is 13.87
A pH of greater than 7 indicates that the solution is basic and a pH close to 14 indicates high alkalinity. This is due to the buffering effect of the salt on the base.
Answer : The concentration of the NaOH solution is, 0.738 M
Explanation :
To calculate the concentration of base, we use the equation given by neutralization reaction:

where,
are the n-factor, molarity and volume of acid which is 
are the n-factor, molarity and volume of base which is NaOH.
We are given:

Putting values in above equation, we get:


Thus, the concentration of the NaOH solution is, 0.738 M
First, since l = n-1,
5,4,-5,1/2 and 2,1,0,1/2 are the only answer choices left.
Next, since ml = -l to l,
2,1,0,1/2
is the answer because in 5,4,-5,1/2, the ml value of -5 is not in the range of -4 to 4, as notes by the value 4 for l.