1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
DedPeter [7]
3 years ago
10

An AX ceramic compound has the rock salt crystal structure. If the radii of the A and X ions are 0.137 and 0.241 nm, respectivel

y, and the respective atomic weights are 22.7 and 91.4 g/mol, what is the density (in g/cm3) of this material?
A. 0.438g/cm3
B. 0. 571g/cm3
C. 1.75g/cm3
D. 3.50g/cm3

Engineering
1 answer:
Tju [1.3M]3 years ago
3 0

Answer:

c) 1.75 g/cm³

Explanation:

Given that

Radii of the A ion, r(c) = 0.137 nm

Radii of the X ion, r(a) = 0.241 nm

Atomic weight of the A ion, A(c) = 22.7 g/mol

Atomic weight of the X ion, A(a) = 91.4 g/mol

Avogadro's number, N = 6.02*10^23 per mol

Solution is attached below

You might be interested in
Block D of the mechanism is confined to move within the slot of member CB. Link AD is rotating at a constant rate of ωAD = 6 rad
svet-max [94.6K]

Answer:

1) 1.71 rad/s

2) -6.22 rad/s²

Explanation:

Choose point C to be the origin.

Using geometry, we can show that the coordinates of point A are:

(a cos 30°, a sin 30° − b)

Therefore, the coordinates of point D at time t are:

(a cos 30° − b sin(ωt), a sin 30° − b + b cos(ωt))

The angle formed by CB with the x-axis is therefore:

tan θ = (a sin 30° − b + b cos(ωt)) / (a cos 30° − b sin(ωt))

1) Taking the derivative with respect to time, we can find the angular velocity:

sec² θ dθ/dt = [(a cos 30° − b sin(ωt)) (-bω sin(ωt)) − (a sin 30° − b + b cos(ωt)) (-bω cos(ωt))] / (a cos 30° − b sin(ωt))²

sec² θ dθ/dt = -bω [(a cos 30° − b sin(ωt)) sin(ωt) − (a sin 30° − b + b cos(ωt)) cos(ωt)] / (a cos 30° − b sin(ωt))²

sec² θ dθ/dt = -bω [(a cos 30° sin(ωt) − b sin²(ωt)) − (a sin 30° cos(ωt) − b + b cos²(ωt))] / (a cos 30° − b sin(ωt))²

sec² θ dθ/dt = -bω (a cos 30° sin(ωt) − b sin²(ωt) − a sin 30° cos(ωt) + b − b cos²(ωt)) / (a cos 30° − b sin(ωt))²

sec² θ dθ/dt = -bω (a cos 30° sin(ωt) − a sin 30° cos(ωt)) / (a cos 30° − b sin(ωt))²

sec² θ dθ/dt = -abω (cos 30° sin(ωt) − sin 30° cos(ωt)) / (a cos 30° − b sin(ωt))²

We know at the moment shown, a = 350 mm, b = 200 mm, θ = 30°, ω = 6 rad/s, and t = 0 s.

sec² 30° dθ/dt = -(350) (200) (6) (cos 30° sin(0) − sin 30° cos(0)) / (350 cos 30° − 200 sin(0))²

sec² 30° dθ/dt = -(350) (200) (6) (-sin 30°) / (350 cos 30°)²

dθ/dt = (200) (6) (1/2) / 350

dθ/dt = 600 / 350

dθ/dt = 1.71 rad/s

2) Taking the second derivative of θ with respect to time, we can find the angular acceleration.

sec² θ d²θ/dt² + 2 sec² θ tan θ dθ/dt = -abω [(a cos 30° − b sin(ωt))² (ω cos 30° cos(ωt) + ω sin 30° sin(ωt)) − (cos 30° sin(ωt) − sin 30° cos(ωt)) (2 (a cos 30° − b sin(ωt)) (-bω cos(ωt)))] / (a cos 30° − b sin(ωt))⁴

At t = 0:

sec² θ d²θ/dt² + 2 sec² θ tan θ dθ/dt = -abω [(a cos 30°)² (ω cos 30°) − (0 − sin 30°) (2 (a cos 30°) (-bω))] / (a cos 30°)⁴

sec² θ d²θ/dt² + 2 sec² θ tan θ dθ/dt = -abω (a²ω cos³ 30° − 2abω sin 30° cos 30°) / (a⁴ cos⁴ 30°)

sec² θ d²θ/dt² + 2 sec² θ tan θ dθ/dt = -bω (aω cos² 30° − 2bω sin 30°) / (a² cos³ 30°)

d²θ/dt² + 2 tan θ dθ/dt = -bω² (a cos² 30° − b) / (a² cos 30°)

Plugging in values:

d²θ/dt² + 2 tan 30° dθ/dt = -(200) (6)² (350 cos² 30° − 200) / (350² cos 30°)

d²θ/dt² + 2 tan 30° dθ/dt = -7200 (262.5 − 200) / (350² cos 30°)

d²θ/dt² + 2 tan 30° (1.71) = -4.24

d²θ/dt² = -6.22 rad/s²

4 0
3 years ago
With 64 KB of memory and 8 bits in each memory location, how wide should the address bus be to access all 64 KB of memory? (k =
marishachu [46]

Answer:

16-bit wide

Explanation:

In order to find the width of the address bus, we need first to know how many memory cells it is needed to address.

If the size memory is 64 KB, this means that the memory size, in bytes, is equal to the following quantity:

64 KB = 2⁶ * 2¹⁰ bytes = 2¹⁶ bytes.

In order to address this quantity of cell positions, the address bus must be able to address 2¹⁶ bytes, so it must have 16-bit wide.

3 0
3 years ago
Các đặc điểm chính của đường dây dài siêu cao áp .
rodikova [14]

Answer:

Đường dây siêu cao áp 500kV: Những chuyện giờ mới kể ... ​Ngày 27/5/1994, hệ thống đường dây điện siêu cao áp 500kV Bắc - Nam chính thức đưa ... Tại thời điểm đó, các nước như Pháp, Úc, Mỹ khi xây dựng đường dây dài nhất ... và chế ra các máy kéo dây theo đặc thù công việc của từng đơn vị.

Explanation:

8 0
2 years ago
Consider that a system has two entities, Students, Instructors and Course. The Student has the following properties: student nam
tekilochka [14]

Answer:

There's no answer ?

Explanation:

5 0
3 years ago
.a. What size vessel holds 2 kg water at 80°C such that 70% is vapor? What are the pressure and internal energy? b. A 1.6 m3 ves
vesna_86 [32]

Answer:

Part a: The volume of vessel is 4.7680m^3 and total internal energy is 3680 kJ.

Part b: The quality of the mixture is 90.3%  or 0.903, temperature is 120 °C and total internal energy is 4660 kJ.

Explanation:

Part a:

As per given data

m=2 kg

T=80 °C =80+273=353 K

Dryness=70% vapour =0.7

<em>From the steam tables at 80 °C</em>

Specific volume of saturated vapours=v_g=3.40527 m^3/kg

Specific volume of saturated liquid=v_f=0.00102 m^3/kg

Now the relation  of total specific volume for a specific dryness value is given as

                                  v=v_f+x(v_g-v_f)

Substituting the values give

v=v_f+x(v_g-v_f)\\v=0.00102+0.7(3.40527-0.00102)\\v_f=2.38399 m^3/kg

Now the volume of vessel is given as

v=\frac{V}{m}\\V=v \times m\\V=2.38399 \times 2\\V=4.7680 m^3

So the volume of vessel is 4.7680m^3.

Similarly for T=80 and dryness ratio of 0.7 from the table of steam

Pressure=P=47.4 kPa

Specific internal energy is given as u=1840 kJ/kg

So the total internal energy is given as

u=\frac{U}{m}\\U=u \times m\\U=1840 \times 2\\U=3680 kJ

The total internal energy is 3680 kJ.

So the volume of vessel is 4.7680m^3 and total internal energy is 3680 kJ.

Part b

Volume of vessel is given as 1.6

mass is given as 2 kg

Pressure is given as 0.2 MPa or 200 kPa

Now the specific volume is given as

v=\frac{V}{m}\\v=\frac{1.6}{2}\\v=0.8 m^3/kg

So from steam tables for Pressure=200 kPa and specific volume as 0.8 gives

Temperature=T=120 °C

Quality=x=0.903 ≈ 90.3%

Specific internal energy =u=2330 kJ/kg

The total internal energy is given as

u=\frac{U}{m}\\U=u \times m\\U=2330 \times 2\\U=4660 kJ

So the quality of the mixture is 90.3%  or 0.903, temperature is 120 °C and total internal energy is 4660 kJ.

5 0
3 years ago
Other questions:
  • g A food department is kept at -12oC by a refrigerator in an environment at 30oC. The total heat gain to the food department is
    7·1 answer
  • What considerations are included in the Preliminary Floodproofing/Retrofitting Preference Matrix?
    7·1 answer
  • Ignore swell and shrinkage for this problem.
    5·1 answer
  • A 50 mol% mixture of propane (1) and n-butane (2) enters an isothermal flash drum at 37°C. If the flash drum is maintained at 0.
    12·1 answer
  • 4 main causes of erosion
    12·1 answer
  • 12. A structural component is fabricated from an alloy that has a plane strain fracture toughness of It has been determined that
    11·1 answer
  • Technician a says that diesel engines can produce more power because air in fuel or not mix during the intake stroke. Technician
    9·1 answer
  • How can you drop two eggs the feweHow can you drop two eggs the fewest amount of times, without them breaking? ...st amount of t
    13·2 answers
  • What form of joining uses heat to create coalescence of the materials?
    7·1 answer
  • A pipe fitter would fabricate which one of the following systems?
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!