Answer:
The radius of a wind turbine is 691.1 ft
The power generation potential (PGP) scales with speed at the rate of 7.73 kW.s/m
Explanation:
Given;
power generation potential (PGP) = 1000 kW
Wind speed = 5 mph = 2.2352 m/s
Density of air = 0.0796 lbm/ft³ = 1.275 kg/m³
Radius of the wind turbine r = ?
Wind energy per unit mass of air, e = E/m = 0.5 v² = (0.5)(2.2352)²
Wind energy per unit mass of air = 2.517 J/kg
PGP = mass flow rate * energy per unit mass
PGP = ρ*A*V*e

r = 210.64 m = 691.1 ft
Thus, the radius of a wind turbine is 691.1 ft
PGP = CVᵃ
For best design of wind turbine Betz limit (c) is taken between (0.35 - 0.45)
Let C = 0.4
PGP = Cvᵃ
take log of both sides
ln(PGP) = a*ln(CV)
a = ln(PGP)/ln(CV)
a = ln(1000)/ln(0.4 *2.2352) = 7.73
The power generation potential (PGP) scales with speed at the rate of 7.73 kW.s/m
Answer:
See explaination
Explanation:
Please kindly check attachment for the step by step solution of the given problem.
Answer:
Option D
All the above
Explanation:
Depending with the number of occupants in a building, the number of air conditioners required can either be increased or reduced. For instance, if the building is to be a classroom of over 50 students, 1 air-conditioner can't serve effectively. Similarly, the activity of occupants also dictate the amount of air conditioners required since if it's a gym room where occupants exercise often then the air conditioners required is different from if the room was to serve as a lounge. The appliances that also operate in a room require that air conditioners be installed as per the heat that may be generated by the appliances.
Answer:
18 pieces of furniture
Explanation:
Since you receive $120.93 per furniture piece and a the month's commission is $2,176.74 you divide the commission by the furniture price.
Answer:
The percentage ductility is 35.5%.
Explanation:
Ductility is the ability of being deform under applied load. Ductility can measure by percentage elongation and percentage reduction in area. Here, percentage reduction in area method is taken to measure the ductility.
Step1
Given:
Diameter of shaft is 10.2 mm.
Final area of the shaft is 52.7 mm².
Calculation:
Step2
Initial area is calculated as follows:


A = 81.713 mm².
Step3
Percentage ductility is calculated as follows:


D = 35.5%.
Thus, the percentage ductility is 35.5%.