Answer : The correct option is, (c) 
Explanation :
First we have to calculate the energy or heat.
Formula used :

where,
E = energy (in joules)
V = voltage (in volt)
I = current (in ampere)
t = time (in seconds)
Now put all the given values in the above formula, we get:


Now we have to calculate the heat capacity of the calorimeter.
Formula used :

where,
C = heat capacity of the calorimeter
= initial temperature = 
= final temperature = 
Now put all the given values in this formula, we get:


Therefore, the heat capacity of the calorimeter is, 
Answer:
25 degrees
Explanation:
The angle of incidence equals the angle of reflection
Answer:
Coefficient of friction between the book and floor is 0.582.
Explanation:
Using the velocity formula;
v^2 = 2as
a = v^2/(2s)
a = 1.6^2/(2*0.9)
a = 2.56/1.8
a = 1.42 m/s^2
the force necessary to give the book the acceleration is
F = ma = 3.5*1.42 (m is mass of the book i.e. 3.5 kg)
F = 4.98 N
The difference in the force is the friction force, which is
Ff = 25 - 4.98 = 20 N
Ff = mgμ
where μ is coefficient of friction and g is acceleration due to gravity that is 9.8 m/s^2
μ = Ff/mg
μ = 20/(3.5*9.81)
μ = 0.582
Coefficient of friction between the book and floor is 0.582.
To solve this problem it is necessary to apply the concepts related to the Conservation of Energy, for which it is necessary that any decrease made through the potential energy, is equivalent to the gain given in the kinetic energy or vice versa.
Mathematically this can be expressed as

Since there is no final potential energy (the height is zero), and the initial potential energy is equivalent to the work done we have to






Therefore the non-conservative work was done on the boy is 1.4kJ