Answer:
103.57 Km/h
Explanation:
From the question given above, the following data were obtained:
Distance = 725 Km
Time = 7 hours
Speed =?
Speed can be defined as the distance travelled per unit time. Mathematically, it is expressed as:
Speed = Distance /time
With the above formula, we can calculate how fast he will drive (i.e the speed) in order to get there on time. This is illustrated below:
Distance = 725 Km
Time = 7 hours
Speed =?
Speed = Distance /time
Speed = 725 / 7
Speed = 103.57 Km/h
Thus, to get there on time, he will drive with a speed of 103.57 Km/h
Correct order, from lowest potential energy to highest potential energy:
E - C - D - B - A
Explanation:
The gravitational potential energy of the car is given by:

where
m is the car's mass
g is the gravitational acceleration
h is the height of the car relative to the ground
In the formula, we see that m and g are constant, so the potential energy of the car depends only on its height above the ground, h. The higher the car from the ground, the larger its potential energy. Therefore, the position with least potential energy will be E, since the height is the minimum. Then, C will have more potential energy, because the car is at higher position, and so on: the position with greatest potential energy is A, because the height of the car is maximum.
It would be either A or C if its still moving and not stopping
Answer:
Explanation:
Kinematics equation for first Object:
but:
The initial velocity is zero
it reach the water at in instant, t1, y(t)=0:
Kinematics equation for the second Object:
The initial velocity is zero
but:
it reach the water at in instant, t2, y(t)=0. If the second object is thrown 1s later, t2=t1-1=1.02s
The velocity is negative, because the object is thrown downwards