Answer:

Explanation:
Let the charge on the ball bearing is q.
charge on glass bead, Q = 20 nC = 20 x 10^-9 C
Force between them, F = 0.018 N
Distance between them, d = 1 cm = 0.01 m
By use of Coulomb's law in electrostatics

By substituting the values


Thus, the charge on the ball bearing is 
Answer:
1/2 m v^2 + 1/2 I ω^2 = m g h conservation of energy
I = 2/5 m R^2 inertia of solid sphere
1/2 m v^2 + 1/5 m ω^2 R^2 = m g h
1/2 v^2 + 1/5 v^2 = g h
v^2 = 10 g h / 7 = 1.43 * 9.80 * 19 m^2/s^2 = 266 m^2/s^2
v = 16.3 m/s
v = R ω
ω = 16.3 / .6 = 27.2 / sec
Answer: 909 m/s
Explanation:
Given
Mass of the bullet, m1 = 0.05 kg
Mass of the wooden block, m2 = 5 kg
Final velocities of the block and bullet, v = 9 m/s
Initial velocity of the bullet v1 = ? m/s
From the question, we would notice that there is just an object (i.e the bullet) moving before the collision. Also, even after the collision between the bullet and wood, the bullet and the wood would move as one object. Thus, we would use the conservation of momentum to solve
m1v1 = (m1 + m2) v, on substituting, we have
0.05 * v1 = (0.05 + 5) * 9
0.05 * v1 = 5.05 * 9
0.05 * v1 = 45.45
v1 = 45.45 / 0.05
v1 = 909 m/s
Thus, the original velocity of the bullet was 909 m/s
Answer:
50 out of 100 (ik its right)