A. True would be the best answer
Answer: 
Explanation:
Molecular formula is the chemical formula which depicts the actual number of atoms of each element present in the compound.
Empirical formula is the simplest chemical formula which depicts the whole number of atoms of each element present in the compound.
The empirical formula is 
The empirical weight of
= 1(12)+1(1)+1(16)= 29 g.
The molecular weight = 60 g/mole
Now we have to calculate the molecular formula:

The molecular formula will be=
Thus molecular formula will be 
Answer:
The higher the temperature, the faster the particles move, the lower the temperature, the slower.
Answer:
N = n× l
N = number of entities
n= moles
l = Avogadro's constant = 6.023 × 10^23
3.01 × 10^ 23 = n * 6.023 × 10^23
n = 3.01 × 10^23/6.023 × 10^23
n= 0.5moles
Molar mass = mass/ number of moles
Molar mass = 56
mass = 56 × 0.5
= 28g
Hope this helps.
Answer: The equilibrium constant for the overall reaction is 
Explanation:
Equilibrium constant is defined as the ratio of concentration of products to the concentration of reactants each raised to the power their stoichiometric ratios.
a) 
![K_a=\frac{[PCl_3]}{[Cl_2]^{\frac{3}{2}}}](https://tex.z-dn.net/?f=K_a%3D%5Cfrac%7B%5BPCl_3%5D%7D%7B%5BCl_2%5D%5E%7B%5Cfrac%7B3%7D%7B2%7D%7D%7D)
b) 
![K_b=\frac{[PCl_5]}{[Cl_2]\times [PCl_3]}](https://tex.z-dn.net/?f=K_b%3D%5Cfrac%7B%5BPCl_5%5D%7D%7B%5BCl_2%5D%5Ctimes%20%5BPCl_3%5D%7D)
For overall reaction on adding a and b we get c
c) 
![K_c=\frac{[PCl_5]}{[Cl_2]^\frac{5}{2}}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BPCl_5%5D%7D%7B%5BCl_2%5D%5E%5Cfrac%7B5%7D%7B2%7D%7D)
![K_c=K_a\times K_b=\frac{[PCl_3]}{[Cl_2]^{\frac{3}{2}}}\times \frac{[PCl_5]}{[Cl_2]\times [PCl_3]}](https://tex.z-dn.net/?f=K_c%3DK_a%5Ctimes%20K_b%3D%5Cfrac%7B%5BPCl_3%5D%7D%7B%5BCl_2%5D%5E%7B%5Cfrac%7B3%7D%7B2%7D%7D%7D%5Ctimes%20%5Cfrac%7B%5BPCl_5%5D%7D%7B%5BCl_2%5D%5Ctimes%20%5BPCl_3%5D%7D)
The equilibrium constant for the overall reaction is 