Answer:
Work: 4.0 kJ, heat: 4.25 kJ
Explanation:
For a gas transformation at constant pressure, the work done by the gas is given by

where in this case we have:
is the pressure
is the initial volume
is the final volume
Substituting,

The 1st law of thermodynamics also states that

where
is the change in internal energy of the gas
Q is the heat absorbed by the gas
Here we know that

Therefore we can re-arrange the equation to find the heat absorbed by the gas:

Suvat
we have s, u, v and we want a
the suvat equation with these values in is: v^2 = u^2 - 2as
so a = (-v^2 + u^2)/-2s
plug numbers in
a = (-85^2 + 0^2)/-2*36 = 7225/72 = 100.3... ms^-2
Answer: 71.7 KJ
Explanation:
The rotational kinetic energy of a rotating body can be written as follows:
Krot = ½ I ω2
Now, any point on the rim of the flywheel, is acted by a centripetal force, according to Newton’s 2nd Law, as follows:
Fc = m. ac
It can be showed that the centripetal acceleration, is related with the angular velocity and the radius, as follows:
ac = ω2 r
We know that this acceleration has a limit value, so , we can take this limit to obtain a maximum value for the angular velocity also.
As the flywheel is a solid disk, the rotational inertia I is just ½ m r2.
Replacing in the expression for the Krot, we have:
Krot= ½ (1/2 mr2.ac/r) = ¼ mr ac = ¼ 67.0 Kg. 1.22 m . 3,510 m/s2 = 71. 7 KJ
Choice-B is the correct one.
-- The atomic number is the number of protons in the nucleus.
-- Each proton in the nucleus is usually matched by one electron in the 'cloud'.
-- The addition of a proton OR a neutron increases the mass number by 1 .
-- Electrons have such small mass that they don't figure into the atomic mass at all.