Answer:
B. If the container is cooled, the gas particles will lose kinetic energy and temperature will decrease.
C. If the gas particles move more quickly, they will collide more frequently with the walls of the container and pressure will increase.
E. If the gas particles move more quickly, they will collide with the walls of the container more often and with more force, and pressure will increase.
#FreeMelvin
Answer:
Explanation:
Given that,.
A house hold power consumption is
475 KWh
Gas used is
135 thermal gas for month
Given that, 1 thermal = 29.3 KWh
Then,
135 thermal = 135 × 29.3 = 3955.5 KWh
So, total power used is
P = 475 + 3955.5
P =4430.5 KWh
Since 1 hr = 3600 seconds
So, the energy consumed for 1hr is
1KW = 1000W
P = energy / time
Energy = Power × time
E = 4430.5 KWhr × 1000W / KW × 3600s / hr
E = 1.595 × 10^10 J
So, using Albert Einstein relativity equation
E = mc²
m = E / c²
c is speed of light = 3 × 10^8 m/s
m = 1.595 × 10^10 / (3 × 10^8)²
m = 1.77 × 10^-7 kg
Then,
1 kg = 10^6 mg
m = 1.77 × 10^-7 kg × 10^6 mg / kg
m = 0.177mg
m ≈ 0.18 mg
Answer:
PO(1) = PO(0) / 2 1 refers to 1 half life of PO(0)
PO(2) = PO(1) / 2 = P(0) / 4 amount of PO left after 2 half-lives
PO(3) = PO(2) / 2 = PO(0) / 8 amount of PO left after 3 half-lives
414 da / 138 da = 3 3 half-lives pass in 414 da
PO(0) = 8 PO(3) = 8 * 1.45E-4 g = 1.16E-3 g = .00116 g after 414 days
Answer:

or 88.3m/s^2
Explanation:
Using suvat where we list everything that we are given
s=49m
u=0m/s
v=93m/s
a=?
t=we are not given this value, so we don't use
using a formula that doesn't involve time:

rearranging to find acceleration by subtracting u^2 on both sides

then dividing 2s on both sides


so the acceleration is 88.3ms^-2 (1dp)