Answer:
a) E = 0.0048 Volts
b) dA/dt = - 0.002285 m²/s
Explanation:
Given:
Area, A = 0.020 m²
Rate of change of magnetic field, dB/dt = 0.24 T/s
a) The magnitude of the emf induced (E) is given as:
E= A × (dB/dt)
on substituting the values in the above equation, we get
E = (0.020 m²) × (0.24 T/s)
or
E = 0.0048 Volts
b) Now, The induced emf when both the area and the magnetic field is varying
we have
E = B(dA/dt) + A(dB/dt)
Now, for the given case induced emf is zero i.e E = 0 and magnetic field B = 2.1 T
thus,
0 = (2.1 T)(dA/dt) + (0.020 m2)(0.24 T/s)
dA/dt = - 0.002285 m²/s
Hence, the area should be decreased at the rate of 0.002285 m²/s
31 (unit)
acceleration formula
net force (124)
Acceleration = -------------
mass (4)
124÷4=31
Time= s/v
Speed =5km/h
Time=30min
Distance is required
Distance=time*speed
30min*5km/h=600m
Answer:
3.416 m/s
Explanation:
Given that:
mass of cannonball
= 72.0 kg
mass of performer
= 65.0 kg
The horizontal component of the ball initially
= 6.50 m/s
the final velocity of the combined system v = ????
By applying the linear momentum of conservation:




v = 3.416 m/s