1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vesnalui [34]
2 years ago
14

Is this a balanced equation? 6O2+ C6H12O6---> 6 CO2 + 6H2O ]

Physics
1 answer:
grigory [225]2 years ago
7 0

Yes, this equation is balanced.

You can check it using the law of conservation of mass, i.e., the total mass of the products formed must be equal to the total mass of the reactants.

You might be interested in
12)A black body is heated from 27°C to 127° C. The ratio of their energies of radiations emitted will be
Nat2105 [25]

Answer:

81:256.

Explanation:

Let T denote the absolute temperature of this object.

Calculate the value of T before and after heating:

T(\text{before}) = 27 + 273 = 300\; \rm K.

T(\text{after}) = 127 + 273 = 400\; \rm K.

By the Stefan-Boltzmann Law, the energy that this object emits (over all frequencies) would be proportional to T^4.

Ratio between the absolute temperature of this object before and after heating:

\displaystyle \frac{T(\text{before})}{T(\text{after})} = \frac{3}{4}.

Therefore, by the Stefan-Boltzmann Law, the ratio between the energy that this object emits before and after heating would be:

\displaystyle \left(\frac{T(\text{before})}{T(\text{after})}\right)^{4} = \left(\frac{3}{4}\right)^{4} = \frac{81}{256}.

4 0
3 years ago
About 10-15% of all galaxies are which shape?
myrzilka [38]
The answer is; Irregular.
4 0
3 years ago
Continuous sinusoidal perturbation Assume that the string is at rest and perfectly horizontal again, and we will restart the clo
Elena-2011 [213]

a) 3.14 \cdot 10^{-4} s

b) See plot attached

c) 10.0 m

d) 0.500 cm

Explanation:

a)

The position of the tip of the lever at time t is described by the equation:

y(t)=(0.500 cm) sin[(2.00\cdot 10^4 s^{-1})t] (1)

The generic equation that describes a wave is

y(t)=A sin (\frac{2\pi}{T} t) (2)

where

A is the amplitude of the wave

T is the period of the wave

t is the time

By comparing (1) and (2), we see that for the wave in this problem we have

\frac{2\pi}{T}=2.00\cdot 10^4 s^{-1}

Therefore, the period is

T=\frac{2\pi}{2.00\cdot 10^4}=3.14 \cdot 10^{-4} s

b)

The sketch of the profile of the wave until t = 4T is shown in attachment.

A wave is described by a sinusoidal function: in this problem, the wave is described by a sine, therefore at t = 0 the displacement is zero, y = 0.

The wave than periodically repeats itself every period. In this sketch, we draw the wave over 4 periods, so until t = 4T.

The maximum displacement of the wave is given by the value of y when sin(...)=1, and from eq(1), we see that this is equal to

y = 0.500 cm

So, this is the maximum displacement represented in the sketch.

c)

When standing waves are produced in a string, the ends of the string act as they are nodes (points with zero displacement): therefore, the wavelength of a wave in a string is equal to twice the length of the string itself:

\lambda=2L

where

\lambda is the wavelength of the wave

L is the length of the string

In this problem,

L = 5.00 m is the length of the string

Therefore, the wavelength is

\lambda =2(5.00)=10.0 m

d)

The amplitude of a wave is the magnitude of the maximum displacement of the wave, measured relative to the equilibrium position.

In this problem, we can easily infer the amplitude of this wave by looking at eq.(1).

y(t)=(0.500 cm) sin[(2.00\cdot 10^4 s^{-1})t]

And by comparing it with the general equation of a wave:

y(t)=A sin (\frac{2\pi}{T} t)

In fact, the maximum displacement occurs when the sine part is equal to 1, so when

sin(\frac{2\pi}{T}t)=1

which means that

y(t)=A

And therefore in this case,

y=0.500 cm

So, this is the displacement.

6 0
3 years ago
I AM........ INEVITABLE
Archy [21]

Answer:

that's nice very nice super duper nicer

5 0
3 years ago
In an effort to stay awake for an all-night study session, a student makes a cup of coffee by first placing a 200 WW electric im
ivolga24 [154]

Answer:

The heat is 115478.4 J.

Explanation:

Given that,

Mass of water = 0.400 kg

Power = 200 W

Suppose, we determine how much heat must be added to the water to raise its temperature from 20.0°C to 89.0°C?

We need to calculate the heat

Using formula of heat

Q=mc\Delta T

Where, m = mass of water

c = specific heat

Put the value into the formula

Q=400\times4.184\times(89-20)

Q=115478.4\ J

Hence, The heat is 115478.4 J.

7 0
3 years ago
Other questions:
  • A ball having a mass of 500 grams is dropped from a height of
    12·2 answers
  • Can someone answer these?
    11·1 answer
  • Suppose the initial position of an object is zero, the starting velocity is 3 m/s and the final velocity was 10 m/s. The object
    10·2 answers
  • A bus travels 6 km east and then 8 km south. The magnitude of the bus’s resultant displacement is ___km.
    9·1 answer
  • The structural diversity of carbon-based molecules is determined by which properties?
    12·1 answer
  • What is the formula for the speed of a car
    7·2 answers
  • A ball is thrown from 1 m above the ground. The initial velocity is 20 m/s at an angle of 40 degrees above the horizontal. What
    14·1 answer
  • Exam
    5·2 answers
  • Scientific theories are deductive in nature.?
    5·1 answer
  • Use the information from the graph to answer the question.
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!