1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
dexar [7]
3 years ago
7

If x + 3(2x-5) = 6 then x = O -3 3 O 15 O Option 4 O-14

Mathematics
2 answers:
Naily [24]3 years ago
8 0

Answer:

<h3>\boxed{ \boxed{ \bold{ \sf{3}}}}</h3>

Step-by-step explanation:

\sf{x + 3(2x - 5) = 6}

Distribute 3 through the parentheses

⇒\sf{x + 6x - 15 = 6}

Collect like terms

⇒\sf{7x  - 15 = 6}

Move constant to right hand side and change it's sign

⇒\sf{7x = 6 + 15}

Add the numbers

⇒\sf{7x = 21}

Divide both sides of the equation by 7

⇒\sf{ \frac{7x}{7}  =  \frac{21}{7} }

Calculate

⇒\sf{x = 3}

Hope I helped!

Best regards!

Ronch [10]3 years ago
7 0
<h2>x = 3</h2>

Step-by-step explanation:

x + 3(2x - 5) = 6 \\ x + 6x - 15 = 6 \\ 7x = 6 + 15 \\ 7x = 21

\frac{7x}{7}  =  \frac{21}{7}  \\ x = 3

Step 1 Use 3 to open the bracket

Step 2: Collect like terms and simplify

Step 3: Divide both sides by 7

You might be interested in
HELP ASAP PLEASE WILL MARK BRAINIEST
Lady bird [3.3K]

Answer:

I thinks its 180 degrees conter clockwise

so one square thing is 90 degrees

and it goes 2 times

u welcome and good luck :)

8 0
3 years ago
Read 2 more answers
275 liters to millimeters​
Bogdan [553]

Answer:

2,75,000 mL

Step-by-step explanation:

1 Litre = 1000 ml

So,

275 Litres = 275 x 1000 mL

                 = 2,75,000 mL

6 0
3 years ago
Timed! Does anyone know this algebra question? Will give brainiest
sineoko [7]

square root of 3 is the correct answer, the first choicw

5 0
3 years ago
If x= 1/2y the which expression represents? 1/x <br><br>A 1/2y<br>B -1/2y<br>C 2y<br>D -2y​
slega [8]

Answer:

c

Step-by-step explanation:

1/(1/2)

2

y=2

3 0
3 years ago
<img src="https://tex.z-dn.net/?f=%5Cleft%20%5C%7B%20%7B%7Bx%2By%3D1%7D%20%5Catop%20%7Bx-2y%3D4%7D%7D%20%5Cright.%20%5C%5C%5Clef
brilliants [131]

Answer:

<em>(a) x=2, y=-1</em>

<em>(b)  x=2, y=2</em>

<em>(c)</em> \displaystyle x=\frac{5}{2}, y=\frac{5}{4}

<em>(d) x=-2, y=-7</em>

Step-by-step explanation:

<u>Cramer's Rule</u>

It's a predetermined sequence of steps to solve a system of equations. It's a preferred technique to be implemented in automatic digital solutions because it's easy to structure and generalize.

It uses the concept of determinants, as explained below. Suppose we have a 2x2 system of equations like:

\displaystyle \left \{ {{ax+by=p} \atop {cx+dy=q}} \right.

We call the determinant of the system

\Delta=\begin{vmatrix}a &b \\c  &d \end{vmatrix}

We also define:

\Delta_x=\begin{vmatrix}p &b \\q  &d \end{vmatrix}

And

\Delta_y=\begin{vmatrix}a &p \\c  &q \end{vmatrix}

The solution for x and y is

\displaystyle x=\frac{\Delta_x}{\Delta}

\displaystyle y=\frac{\Delta_y}{\Delta}

(a) The system to solve is

\displaystyle \left \{ {{x+y=1} \atop {x-2y=4}} \right.

Calculating:

\Delta=\begin{vmatrix}1 &1 \\1  &-2 \end{vmatrix}=-2-1=-3

\Delta_x=\begin{vmatrix}1 &1 \\4  &-2 \end{vmatrix}=-2-4=-6

\Delta_y=\begin{vmatrix}1 &1 \\1  &4 \end{vmatrix}=4-3=3

\displaystyle x=\frac{\Delta_x}{\Delta}=\frac{-6}{-3}=2

\displaystyle y=\frac{\Delta_y}{\Delta}=\frac{3}{-3}=-1

The solution is x=2, y=-1

(b) The system to solve is

\displaystyle \left \{ {{4x-y=6} \atop {x-y=0}} \right.

Calculating:

\Delta=\begin{vmatrix}4 &-1 \\1  &-1 \end{vmatrix}=-4+1=-3

\Delta_x=\begin{vmatrix}6 &-1 \\0  &-1 \end{vmatrix}=-6-0=-6

\Delta_y=\begin{vmatrix}4 &6 \\1  &0 \end{vmatrix}=0-6=-6

\displaystyle x=\frac{\Delta_x}{\Delta}=\frac{-6}{-3}=2

\displaystyle y=\frac{\Delta_y}{\Delta}=\frac{-6}{-3}=2

The solution is x=2, y=2

(c) The system to solve is

\displaystyle \left \{ {{-x+2y=0} \atop {x+2y=5}} \right.

Calculating:

\Delta=\begin{vmatrix}-1 &2 \\1  &2 \end{vmatrix}=-2-2=-4

\Delta_x=\begin{vmatrix}0 &2 \\5  &2 \end{vmatrix}=0-10=-10

\Delta_y=\begin{vmatrix}-1 &0 \\1  &5 \end{vmatrix}=-5-0=-5

\displaystyle x=\frac{\Delta_x}{\Delta}=\frac{-10}{-4}=\frac{5}{2}

\displaystyle y=\frac{\Delta_y}{\Delta}=\frac{-5}{-4}=\frac{5}{4}

The solution is

\displaystyle x=\frac{5}{2}, y=\frac{5}{4}

(d) The system to solve is

\displaystyle \left \{ {{6x-y=-5} \atop {4x-2y=6}} \right.

Calculating:

\Delta=\begin{vmatrix}6 &-1 \\4  &-2 \end{vmatrix}=-12+4=-8

\Delta_x=\begin{vmatrix}-5 &-1 \\6  &-2 \end{vmatrix}=10+6=16

\Delta_y=\begin{vmatrix}6 &-5 \\4  &6 \end{vmatrix}=36+20=56

\displaystyle x=\frac{\Delta_x}{\Delta}=\frac{16}{-8}=-2

\displaystyle y=\frac{\Delta_y}{\Delta}=\frac{56}{-8}=-7

The solution is x=-2, y=-7

4 0
3 years ago
Other questions:
  • B) Sally has a GPA of 3.35. What percentage of the students have a GPA above her GPA? Show all work. (Note: GPA is normally dist
    6·1 answer
  • Perpendicular segments are best described as being which of the following
    6·2 answers
  • 1.3(-7.5m - 3.3) + 0.8m = 2.07 - 3.4m
    11·1 answer
  • Maxine wants a necklace 35 beads long how many blue and black beads does she need
    8·1 answer
  • 3x + 2y = 9
    6·1 answer
  • Naveen has a bag that contains 6 blue marbles, 3 green marbles, and 1 red marble. He will draw one marble randomly from the bag.
    5·1 answer
  • 2. 124 2. 1<br>tell what theroem you used in each class​
    12·1 answer
  • .A teacher has 70 markers inter drawer. She
    11·1 answer
  • C. PBrz (s) + H20 (1) HBr (8) + H2P03 (1)
    7·1 answer
  • Gia is thinking of a number that she calls x. She adds 4 the doubles the sun, what expression represents gias number?
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!