The question is incomplete. The complete question is:
Calcium Carbide (CaC₂) is an unusual substance that contains a carbon anion (C₂²⁻). The reaction with water involves several steps that occur in rapid succession. CaC2 is a salt (notice that its name is similar to sodium chloride). When a salt dissolves in water, ions leave the crystal lattice and enter the aqueous (aq) solution. Write the relevant balanced chemical equation for the dissolution of CaC₂, in water.
Answer:
CaC₂(s) + 2H₂O(l) → Ca(OH)₂(aq) + C₂H₂(aq)
Explanation:
When a salt dissolves in water, it dissociates in its ions. In the Calcium Carbide, the cation is Ca⁺² and the anion is C₂²⁻, so the reaction is:
CaC₂(s) + 2H₂O(l) → Ca(OH)₂(aq) + C₂H₂(aq)
The base Ca(OH)₂ is soluble, so it will dissociate at Ca⁺ and OH⁻, but the C₂H₂ is stable and doesn't dissociate in the solution.
Answer:
about 0.9 mol
Explanation:
there are 22.990 g/mol of Na
20.7/22.99 = 0.900391 mol
about 0.9 mol
<u>Hydrogen bonds </u>are weak bonds that are not strong enough to hold atoms together to form molecules but are strong enough to form bonds within and around large molecules.
- The hydrogen bond is weak bond.
- The hydrogen bond is electrostatic force of attraction between hydrogen atom and more electronegative atoms or group ( like Florine , oxygen or nitrogen) which is contently bonded.
- The hydrogen bond is occur in polar , contently bond atoms in different molecules.
- Example is H-O-H or

- The positively charged hydrogen side of one water molecule is bond with negatively charged oxygen side of another molecule.
learn about Hydrogen bond
brainly.com/question/10904296
#SPJ4
Answer:
NaOH
Explanation:
Look at charge Na has +1 charge and Ca has +2 charge after dissociation . Greater charge Stronger lattice. And as we need weak Lattice, so NaoH is stronger base than Ca(OH)2.
Answer:
% composition O = 19.9%
% composition Cu = 80.1%
Explanation:
Given data:
Total mass of compound = 3.12 g
Mass of copper = 2.50 g
Mass of oxygen = 3.12 - 2.50 = 0.62 g
% composition = ?
Solution:
Formula:
<em>% composition = ( mass of element/ total mass)×100</em>
% composition Cu = (2.50 g / 3.12 g)×100
% composition Cu = 0.80 ×100
% composition Cu = 80.1%
For oxygen:
<em>% composition = ( mass of element/ total mass)×100</em>
% composition O = (0.62 g / 3.12 g)×100
% composition O = 0.199 ×100
% composition O = 19.9%