Answer:
the drops of liquid are coming from the decreases. they are formed as the motion of the water particles in the air gas. this change in motion cause air in the air to change from a liquid to a water
Answer:
87.3 calories of heat is required.
Explanation:
Heat = mcΔT
m= mass, c = specific heat of silver, T = temperature
H= 57.8 g * 0.057 cal/g°C * ( 43.5 - 17 °C)
H = 57.8 * 0.057 * 26.5
H = 87.3069 cal.
The heat required to raise the temperature of 57.8 g of silver from 17 °C to 43.5 °C is 87.3 calories.
Answer:
8.3 kJ
Explanation:
In this problem we have to consider that both water and the calorimeter absorb the heat of combustion, so we will calculate them:
q for water:
q H₂O = m x c x ΔT where m: mass of water = 944 mL x 1 g/mL = 944 g
c: specific heat of water = 4.186 J/gºC
ΔT : change in temperature = 2.06 ºC
so solving for q :
q H₂O = 944 g x 4.186 J/gºC x 2.06 ºC = 8,140 J
For calorimeter
q calorimeter = C x ΔT where C: heat capacity of calorimeter = 69.6 ºC
ΔT : change in temperature = 2.06 ºC
q calorimeter = 69.60J x 2.06 ºC = 143.4 J
Total heat released = 8,140 J + 143.4 J = 8,2836 J
Converting into kilojoules by dividing by 1000 we will have answered the question:
8,2836 J x 1 kJ/J = 8.3 kJ
Within a physical change, an element can change forms, such as going from solid to a liquid through melting. Color change can also occur during a physical change. Physical changes are very different from chemical changes. In a chemical change the element itself changes into something else within a reaction, such as combustion (burning).
Hope this helped
Answer:
It has to do with increasing the entropy of the universe.
Explanation:
The modern definition of entropy is that it is the extent to which a system is able to disperse its energy. Energy (such as heat!) likes to spread itself out, so that as many states as possible are occupied with the least amount of energy.