Answer:
Explanation:
Given
number is given as 
and 

g=acceleration due to gravity
calculating for 




Let us evaluate the given assumptions according to the kinetic theory for an ideal gas.
a.
The motion of one particle is unaffected by other particles unless the particles collide.
TRUE. The particles are in random motion unless they collide.
b.
The forces of attraction among particles keep the particles close together.
FALSE. No forces act between particles except during collision.
c.
Under ordinary conditions, forces of attraction between particles can be ignored.
TRUE.
Answer: Statement b is false because it is not an assumption.
The final speed of the orange is 7.35 m/s
Explanation:
The motion of the orange is a free fall motion, since there is only the force of gravity acting on it. Therefore, it is a uniformly accelerated motion with constant acceleration
towards the ground. So we can use the following suvat equation:

where
v is the final velocity
u is the initial velocity
a is the acceleration
t is the time elapsed
For the orange in this problem, we have
u = 0 (it is dropped from rest)
is the acceleration
Substituting t = 0.75 s, we find the final velocity (and speed) of the orange:

Learn more about free fall:
brainly.com/question/1748290
brainly.com/question/11042118
brainly.com/question/2455974
brainly.com/question/2607086
#LearnwithBrainly
Answer:
M_c = 100.8 Nm
Explanation:
Given:
F_a = 2.5 KN
Find:
Determine the moment of this force about C for the two cases shown.
Solution:
- Draw horizontal and vertical vectors at point A.
- Take moments about point C as follows:
M_c = F_a*( 42 / 150 ) *144
M_c = 2.5*( 42 / 150 ) *144
M_c = 100.8 Nm
- We see that the vertical component of force at point A passes through C.
Hence, its moment about C is zero.