Answer:
Kinetic energy of diver at 90% of the distance to the water is 9000 J
Explanation:
Let d is the distance between the position of the diver and surface of the pool.
Initially, the diver is at rest and only have potential energy which is equal to 10000 J.
As the diver dives towards the pool, its potential energy is converting into kinetic energy due to law of conservation of energy, as total energy of the system remains same.
Energy before diving = Energy during diving
(Potential Energy + Kinetic Energy) = (Kinetic Energy + Potential Energy)
When the diver reaches 90% of the distance to the water, its kinetic energy
is 90% to its initial potential energy, as its initial kinetic is zero,i.e.,
K.E. = 
K.E. = 9000 J
Answer:
B. Radiowaves
Explanation:
Radiowaves are on the higher end of the spectrum, then infrared, visible light, and UV light (which is the lowest energy)
Answer: Cell's nucleus
Explanation :
The full form of DNA is Deoxyribonucleic acid. The genetic information of a cell is organized in the DNA. It is inherited from parents by their children.
DNA is coiled into chromosomes in a cell's nucleus. It has a shape like a double helix. It is twisted in the form of spirals.
Hence, DNA is coiled into chromosomes in a cell's Nucleus.
Answer:
2081.65 m
Explanation:
We'll begin by calculating the time taken for the load to get to the target. This can be obtained as follow:
Height (h) = 3000 m
Acceleration due to gravity (g) = 10 m/s²
Time (t) =?
h = ½gt²
3000 = ½ × 10 × t²
3000 = 5 × t²
Divide both side by 5
t² = 3000 / 5
t² = 600
Take the square root of both side
t = √600
t = 24.49 s
Finally, we shall determine the distance from the target at which the load should be released. This can be obtained as follow:
Horizontal velocity (u) = 85 m/s
Time (t) = 24.49 s
Horizontal distance (s) =?
s = ut
s = 85 × 24.49
s = 2081.65 m
Thus, the load should be released from 2081.65 m.
Answer:
160N
Explanation: When 80kg mass is one group . It's reaction force acting on a ground.
Weight of the object = 80*10
= 800 N
Here we are given cofficient of static friction its 0.2. It should be smaller than 1
Friction force = Reaction * Friction Cofficient
Reaction = 800N ( Considering Vertical Equilibrium )
F = 800* 0.2
F = 160N