Answer:
Vf= 3.435 m/s
Explanation:
Given:
Initial velocity Vi =0 m/s (starting from Rest position)
θ = 37⁰
Distance S = 1 m
To find: Final Velocity Vf=?
fist we have to find the down slope net acceleration a = g sin θ
a= 9.81 sin 37⁰ = 5.9 m/s²
By 3rd equation of motion
2 a S= Vf² - Vi²
Vf = Square root ( 2 × 5.9 m/s² × 1 + 0 m/s)
Vf = Square root (11.8)
Vf= 3.435 m/s
Because glass is not a good heat conductor. What it means is that heat isn't transfered through its structure as quickly as it would with metal, for instance. Because heat can't penetrate glass as quickly, the contents stay at the same temperature for longer.
Answer:
5.522 m
Explanation:
Data provided:
Mass, m = 1.03 kg
spring constant, k = 861.1 N/m
Distance by which the spring is compressed, x = 0.36
Thus,
the energy stored in the spring = 
on substituting the values, we get
the energy stored in the spring = 
now,
by the conservation of energy, we have
Potential energy gained by the mass = Energy gained by the spring
or
mgh = 
where,
g is the acceleration due to the gravity
h is the maximum height reached by the mass before falling
on substituting the values in the above relation, we get
1.03 × 9.81 × h = 
or
h = 5.522 m
OPTION C is the correct answer.