Answer:
Product: ethyl L-valinate
Explanation:
If we want to understand what it is the molecule produced we have to an<u>alyze the reagents</u>. We have valine an <u>amino acid</u>, in this kind of compounds we have an <em>amine group</em> (
) and a <em>carboxylic acid</em> group (
). Additionally, we have an <u>alcohol </u>(
) in the presence of HCl (a <u>strong acid</u>) in the first step, and a base (
).
When we have an acid and an alcohol in a vessel we will have an <u>esterification reaction</u>. In other words, an ester is produced. As the <em>first step,</em> the oxygen in the C=O (in the carboxylic acid group) would be protonated. In the <em>second step</em>, the ethanol attacks the carbon in the C=O of the carboxylic acid group producing a new bond between the oxygen in the ethanol and the carbon in the carboxylic acid. In <em>step 3</em>, a proton is transferred to produce a better leaving group (
). In <em>step 4</em>, a water molecule leaves the main structure to produce again the double bond C=O. <em>Finally</em>, a base (
) removes the hydrogen from the C=O bond to produce ethyl L-valinate
See figure 1
I hope it helps!
V2 = 250 ml
Explanation:
Given:
P1 = 0.99 atm. V1 = 240 ml
P2 = 0.951 atm. V2 = ?
We can use Boyle's law to solve for V2
P1V1 = P2V2
V2 = (P1/P2)V1
= (0.99 atm/0.951 atm)(240 ml)
= 250. ml
Answer:
The answer is an attached file
Explanation:
I hope it'll be useful to you.
This problem is providing the basic dissociation constant of ibuprofen (IB) as 5.20, its pH as 8.20 and is requiring the equilibrium concentration of the aforementioned drug by giving the chemical equation at equilibrium it takes place. The obtained result turned out to be D) 4.0 × 10−7 M, according to the following work:
First of all, we set up an equilibrium expression for the given chemical equation at equilibrium, in which water is omitted for it is liquid and just aqueous species are allowed to be included:
![Kb=\frac{[IBH^+][OH^-]}{[IB]}](https://tex.z-dn.net/?f=Kb%3D%5Cfrac%7B%5BIBH%5E%2B%5D%5BOH%5E-%5D%7D%7B%5BIB%5D%7D)
Next, we calculate the concentration of hydroxide ions and the Kb due to the fact that both the pH and pKb were given:

![[OH^-]=10^{-5.8}=1.585x10^{-6}M](https://tex.z-dn.net/?f=%5BOH%5E-%5D%3D10%5E%7B-5.8%7D%3D1.585x10%5E%7B-6%7DM)

Then, since the concentration of these ions equal that of the conjugated acid of the ibuprofen (IBH⁺), we can plug in these and the Kb to obtain:
![6.31x10^{-6}=\frac{(1.585x10^{-6})(1.585x10^{-6})}{[IB]}](https://tex.z-dn.net/?f=6.31x10%5E%7B-6%7D%3D%5Cfrac%7B%281.585x10%5E%7B-6%7D%29%281.585x10%5E%7B-6%7D%29%7D%7B%5BIB%5D%7D)
Finally, we solve for the equilibrium concentration of ibuprofen:
![[IB]=\frac{(1.585x10^{-6})(1.585x10^{-6})}{6.31x10^{-6}}=4.0x10^{-7}](https://tex.z-dn.net/?f=%5BIB%5D%3D%5Cfrac%7B%281.585x10%5E%7B-6%7D%29%281.585x10%5E%7B-6%7D%29%7D%7B6.31x10%5E%7B-6%7D%7D%3D4.0x10%5E%7B-7%7D)
Learn more:
(Weak base equilibrium calculation) brainly.com/question/9426156
2.34 moles titanium x (6.022 x 10^23)/1 mole titanium = 1.41 x 10^24