Answer:
In the third step of the citric acid cycle, the oxidation of isocitrate takes place and one molecule of carbon dioxide is released.
Explanation:
In the first step of citric acid cycle, acetylCoA combines with a four-carbon molecule, oxaloacetate, forming a six-carbon molecule, citrate.
In the second step, the citrate in the presence of enzyme anicotase is converted into isocitrate.
<u>In the third step, the oxidation of isocitrate takes place and one molecule of carbon dioxide is released leaving behind one five-carbon molecule called as α-ketoglutarate. During this step, NAD⁺ is reduced to form NADH. </u>
<u>This is first round of the citric acid cycle that could possibly release a carbon atom originating from this acetyl CoA.</u>
On series of reaction, another carbon dioxide molecule also being relased and oxaloacetate is regenerated again.
Do you need help with all 3 questions or just the one that’s unanswered?
Answer:
more kinetic
Explanation:
I think the kinetic energy is 75 percent while the potential energy is 25 percent
Answer: Be= 2, C =4, Li = 1 and B=3
Explanation:
The valence shell can be define as the outermost shell of an atom that contains the valence electrons.
Beryllium (Be), electronic configuration; 1s2 2s2, = 2 electrons in its valence shell.
Carbon (C), electronic configuration; 1s2 2s2 2p2, = 4 electrons in its valence shell.
Lithium (Li), electronic configuration; 1s2 2s1 = 1 electron in its valence shell.
Boron (B) , electronic configuration; 1s2 2s2 2p1 = 3 electron in its valence shell.