In order for particles to perform a simple harmonic motion, we must follow the law of force of the form F = -kx, where x is the displacement of the object from the equilibrium position and k is the spring constant. The
force shown in <span>F = -kx is always the restoring force in the sense
that the particles are pulled towards the equilibrium position.
The
repulsive force felt when the charge q1 is pushed into another charge
q2 of the same polarity is given by Coulomb's law
F = </span><span>k *q1* q2 / r^2.
</span>It is clear that Coulomb's law is an inverse-square relationship. It does not have the same mathematical form as the equation <span><span>F = -kx.</span> Thus,
charged particles pushed towards another fixed charged particle of
the same fixed polarity do not show a simple harmonic motion when
released. Coulomb's law does not describe restoring force. When q1 is released, it just fly away from q2 and never returns.</span>
Your question asks what the slope of a Position vs. Time graph represents.
Your answer would be Velocity.
The slope of a Position vs. Time graph would represent the velocity of the object.
If the slope is positive, then the object has a positive velocity ,in which it is going forward.
If the slope is negative, then the object has a negative velocity, which means that it's going the opposite direction, or backwards.
If the slope is at a "horizontal" position, this means that the object is stopped or isn't moving at all.
Here, Your Options are absent, but the elements that would most likely become a positive ion will be:
hydrogen, sodium, potassium, lithium, cesium etc.
Hope this helps!
Answer:
0.72 kg per cubic m
Explanation:
Mass = 14.4 kg
Volume = lbh = 4*1*5 = 20 cubic m

The interaction that caused the archer to miss was probably refraction.