Displacement from the center line for minimum intensity is 1.35 mm , width of the slit is 0.75 so Wavelength of the light is 506.25.
<h3>How to find Wavelength of the light?</h3>
When a wave is bent by an obstruction whose dimensions are similar to the wavelength, diffraction is observed. We can disregard the effects of extremes because the Fraunhofer diffraction is the most straightforward scenario and the obstacle is a long, narrow slit.
This is a straightforward situation in which we can apply the
Fraunhofer single slit diffraction equation:
y = mλD/a
Where:
y = Displacement from the center line for minimum intensity = 1.35 mm
λ = wavelength of the light.
D = distance
a = width of the slit = 0.75
m = order number = 1
Solving for λ
λ = y + a/ mD
Changing the information that the issue has provided:
λ = 1.35 * 10^-3 + 0.75 * 10^-3 / 1*2
=5.0625 *10^-7 = 506.25
so
Wavelength of the light 506.25.
To learn more about Wavelength of the light refer to:
brainly.com/question/15413360
#SPJ4
Answer:
.5 grams
Explanation:
1 gram is equal to 1000 milligrams (mg)
As we know that gravitational potential energy is given by

here we have
m = mass = 120 kg

h = height = 8.2 m
now from above formula


so above is the gravitational potential energy of the couch
Answer:
True
Explanation:
The Sun rotates in the counterclockwise (CCW) direction when seen from its north pole. Since, the planets revolve around the Sun because of its gravity, the revolution of all the planets and their moons as seen from the north of the Sun is in CCW direction.
In fact most of the solar system bodies rotate in the same direction that is CCW. Some major exceptions to this are Venus and Uranus.
Almost all the planets and moons were made from the planetary disk around the Sun. Thus, they lie nearly in the same plane.
Respon
lqiudos ciopatmibes
ly apsamtios ccoriendor sabe r
llpop
io.