Answer:
The tank is losing

Explanation:
According to the Bernoulli’s equation:
We are being informed that both the tank and the hole is being exposed to air :
∴ P₁ = P₂
Also as the tank is voluminous ; we take the initial volume
≅ 0 ;
then
can be determined as:![\sqrt{[2g (h_1- h_2)]](https://tex.z-dn.net/?f=%5Csqrt%7B%5B2g%20%28h_1-%20h_2%29%5D)
h₁ = 5 + 15 = 20 m;
h₂ = 15 m
![v_2 = \sqrt{[2*9.81*(20 - 15)]](https://tex.z-dn.net/?f=v_2%20%3D%20%5Csqrt%7B%5B2%2A9.81%2A%2820%20-%2015%29%5D)
![v_2 = \sqrt{[2*9.81*(5)]](https://tex.z-dn.net/?f=v_2%20%3D%20%5Csqrt%7B%5B2%2A9.81%2A%285%29%5D)
as it leaves the hole at the base.
radius r = d/2 = 4/2 = 2.0 mm
(a) From the law of continuity; its equation can be expressed as:
J = 
J = πr²
J =
J =
b)
How fast is the water from the hole moving just as it reaches the ground?
In order to determine that; we use the relation of the velocity from the equation of motion which says:
v² = u² + 2gh
₂
v² = 9.9² + 2×9.81×15
v² = 392.31
The velocity of how fast the water from the hole is moving just as it reaches the ground is : 

Answer:
0.6 m
Explanation:
When a spring is compressed it stores potential energy. This energy is:
Ep = 1/2 * k * x^2
Being x the distance it compressed/stretched.
When the spring bounces the ice cube back it will transfer that energy to the cube, it will raise up the slope, reaching a high point where it will have a speed of zero and a potential energy equal to what the spring gave it.
The potential energy of the ice cube is:
Ep = m * g * h
This is vertical height and is related to the distance up the slope by:
sin(a) = h/d
h = sin(a) * d
Replacing:
Ep = m * g * sin(a) * d
Equating both potential energies:
1/2 * k * x^2 = m * g * sin(a) * d
d = (1/2 * k * x^2) / (m * g * sin(a))
d= (1/2 * 25 * 0.1^2) / (0.05 * 9.81 * sin(25)) = 0.6 m
A. more quickly. example lightning (light) comes first in a storm. then thunder (sound) comes after
Answer : 413.44N
Here it is given that an elevator is moving down with an acceleration of 3.36 m/s² . And we are interested in finding out the apparent weight of a 64.2 kg man . For the diagram refer to the attachment .
- From the elevator's frame ( non inertial frame of reference) , we would have to think of a pseudo force.
- The direction of this force is opposite to the direction of acceleration the frame and its magnitude is equal to the product of mass of the concerned body with the acceleration of the frame .
- When a elevator accelerates down , the weight recorded is less than the actual weight .
From the Free body diagram ,
- Mass of the man = 64.2 kg