Answer:
18 ft³
Step-by-step explanation:
He brought home 6 pints of milk home
hope it helps
<u>Answer-</u>
At
the curve has maximum curvature.
<u>Solution-</u>
The formula for curvature =
![K(x)=\frac{{y}''}{(1+({y}')^2)^{\frac{3}{2}}}](https://tex.z-dn.net/?f=K%28x%29%3D%5Cfrac%7B%7By%7D%27%27%7D%7B%281%2B%28%7By%7D%27%29%5E2%29%5E%7B%5Cfrac%7B3%7D%7B2%7D%7D%7D)
Here,
![y=4e^{x}](https://tex.z-dn.net/?f=y%3D4e%5E%7Bx%7D)
Then,
![{y}' = 4e^{x} \ and \ {y}''=4e^{x}](https://tex.z-dn.net/?f=%7By%7D%27%20%3D%204e%5E%7Bx%7D%20%5C%20and%20%5C%20%7By%7D%27%27%3D4e%5E%7Bx%7D)
Putting the values,
![K(x)=\frac{{4e^{x}}}{(1+(4e^{x})^2)^{\frac{3}{2}}} = \frac{{4e^{x}}}{(1+16e^{2x})^{\frac{3}{2}}}](https://tex.z-dn.net/?f=K%28x%29%3D%5Cfrac%7B%7B4e%5E%7Bx%7D%7D%7D%7B%281%2B%284e%5E%7Bx%7D%29%5E2%29%5E%7B%5Cfrac%7B3%7D%7B2%7D%7D%7D%20%3D%20%5Cfrac%7B%7B4e%5E%7Bx%7D%7D%7D%7B%281%2B16e%5E%7B2x%7D%29%5E%7B%5Cfrac%7B3%7D%7B2%7D%7D%7D)
Now, in order to get the max curvature value, we have to calculate the first derivative of this function and then to get where its value is max, we have to equate it to 0.
![{k}'(x) = \frac{(1+16e^{2x})^{\frac{3}{2} } (4e^{x})-(4e^{x})(\frac{3}{2}(1+e^{2x})^{\frac{1}{2}})(32e^{2x})}{(1+16e^{2x} )^{2}}](https://tex.z-dn.net/?f=%7Bk%7D%27%28x%29%20%3D%20%5Cfrac%7B%281%2B16e%5E%7B2x%7D%29%5E%7B%5Cfrac%7B3%7D%7B2%7D%20%7D%20%284e%5E%7Bx%7D%29-%284e%5E%7Bx%7D%29%28%5Cfrac%7B3%7D%7B2%7D%281%2Be%5E%7B2x%7D%29%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D%29%2832e%5E%7B2x%7D%29%7D%7B%281%2B16e%5E%7B2x%7D%20%29%5E%7B2%7D%7D)
Now, equating this to 0
![(1+16e^{2x})^{\frac{3}{2} } (4e^{x})-(4e^{x})(\frac{3}{2}(1+e^{2x})^{\frac{1}{2}})(32e^{2x}) =0](https://tex.z-dn.net/?f=%281%2B16e%5E%7B2x%7D%29%5E%7B%5Cfrac%7B3%7D%7B2%7D%20%7D%20%284e%5E%7Bx%7D%29-%284e%5E%7Bx%7D%29%28%5Cfrac%7B3%7D%7B2%7D%281%2Be%5E%7B2x%7D%29%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D%29%2832e%5E%7B2x%7D%29%20%3D0)
![\Rightarrow (1+16e^{2x})^{\frac{3}{2}}-(\frac{3}{2}(1+e^{2x})^{\frac{1}{2}})(32e^{2x})](https://tex.z-dn.net/?f=%5CRightarrow%20%281%2B16e%5E%7B2x%7D%29%5E%7B%5Cfrac%7B3%7D%7B2%7D%7D-%28%5Cfrac%7B3%7D%7B2%7D%281%2Be%5E%7B2x%7D%29%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D%29%2832e%5E%7B2x%7D%29)
![\Rightarrow (1+16e^{2x})^{\frac{3}{2}}=(\frac{3}{2}(1+e^{2x})^{\frac{1}{2}})(32e^{2x})](https://tex.z-dn.net/?f=%5CRightarrow%20%281%2B16e%5E%7B2x%7D%29%5E%7B%5Cfrac%7B3%7D%7B2%7D%7D%3D%28%5Cfrac%7B3%7D%7B2%7D%281%2Be%5E%7B2x%7D%29%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D%29%2832e%5E%7B2x%7D%29)
![\Rightarrow (1+16e^{2x})^{\frac{1}{2}}=48e^{2x}](https://tex.z-dn.net/?f=%5CRightarrow%20%281%2B16e%5E%7B2x%7D%29%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D%3D48e%5E%7B2x%7D)
![\Rightarrow (1+16e^{2x})}=48^2e^{2x}=2304e^{2x}](https://tex.z-dn.net/?f=%5CRightarrow%20%281%2B16e%5E%7B2x%7D%29%7D%3D48%5E2e%5E%7B2x%7D%3D2304e%5E%7B2x%7D)
![\Rightarrow 2304e^{2x}-16e^{2x}-1=0](https://tex.z-dn.net/?f=%5CRightarrow%202304e%5E%7B2x%7D-16e%5E%7B2x%7D-1%3D0)
Solving this eq,
we get ![x= \frac{1}{2304e^4-16e^2}](https://tex.z-dn.net/?f=x%3D%20%5Cfrac%7B1%7D%7B2304e%5E4-16e%5E2%7D)
∴ At
the curvature is maximum.
Answer:
for 18 x is 6 and for 20 it is 11
Step-by-step explanation:
For 18, since -1+2x and 5+x is the same thing, set up and equation. WE can simplify to -1+x=5 and then we get x=6
For 20, 18 is 11 since 18=-4+2x. If we simplify we get 22=2x then we can use algebra to say that x=11
Hope this helps :)
Answer:
![x = 30.5](https://tex.z-dn.net/?f=%20x%20%3D%2030.5%20)
Step-by-step explanation:
Two angles are supplementary when they add up to 180°.
So we know that:
![C + D = 180](https://tex.z-dn.net/?f=%20C%20%2B%20D%20%3D%20180)
Supplanting we get:
![(3x-44) + (5x-20) = 180](https://tex.z-dn.net/?f=%20%283x-44%29%20%2B%20%285x-20%29%20%3D%20180%20)
We add up the X's.
![8x-44-20 = 180](https://tex.z-dn.net/?f=%208x-44-20%20%3D%20180%20)
![8x-64 = 180](https://tex.z-dn.net/?f=%208x-64%20%3D%20180%20)
Then we send 64 to the other side adding:
![8x = 180+64](https://tex.z-dn.net/?f=%208x%20%3D%20180%2B64%20)
![8x = 180+64](https://tex.z-dn.net/?f=%208x%20%3D%20180%2B64%20)
![8x = 244](https://tex.z-dn.net/?f=%208x%20%3D%20244%20)
And then the 8 goes dividing:
![x = 244 : 8](https://tex.z-dn.net/?f=%20x%20%3D%20244%20%3A%208)
![x = 30.5](https://tex.z-dn.net/?f=%20x%20%3D%2030.5%20)