Correct answer choice is :
C) The freezing and melting temperatures of a substance are the same.
Explanation:
Fluids have a particular temperature at which they convert into solids, identified as their freezing point. In theory, the melting point of a solid should be the same as the freezing point of the liquid. In practice, small variations among these measures can be seen. The freezing point of a matter is the same as that substance's melting point. At this distinct temperature, the substance can exist as either a solid or a liquid. At temperatures below the freezing/ melting point, the substance is a solid.
Answer:
The longest wavelength of light is 666.7 nm
Explanation:
The general form of the grating equation is
mλ = d(sinθi + sinθr)
where;
m is third-order maximum = 3
λ is the wavelength,
d is the slit spacing (m/slit)
θi is the incident angle
θr is the diffracted angle
Note: at longest wavelength, sinθi + sinθr = 1
λ = d/m
d = 1/500 slits/mm
λ = 1 mm/(500 *3) = 1mm/1500 = 666.7 X 10⁻⁶ mm = 666.7 nm
Therefore, the longest wavelength of light is 666.7 nm
Let both the balls have the same mass equals to m.
Let
and
be the speed of the ball1 and the ball2 respectively, such that

Assuming that both the balls are at the same level with respect to the ground, so let h be the height from the ground.
The total energy of ball1= Kinetic energy of ball1 + Potential energy of ball1. The Kinetic energy of any object moving with speed,
, is 
and the potential energy is due to the change in height is
[where
is the acceleration due to gravity]
So, the total energy of ball1,

and the total energy of ball1,
.
Here, the potential energy for both the balls are the same, but the kinetic energy of the ball1 is higher the ball2 as the ball1 have the higher speed, refer equation (i)
So, 
Now, from equations (ii) and (iii)
The total energy of ball1 hi higher than the total energy of ball2.
Explanation:
The mass written on the periodic table is an average atomic mass taken from all known isotopes of an element. This average is a weighted average, meaning the isotope's relative abundance changes its impact on the final average. The reason this is done is because there is no set mass for an element.