1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Gekata [30.6K]
4 years ago
9

P(x) = x + 1x² – 34x + 343 d(x)= x + 9

Mathematics
1 answer:
Feliz [49]4 years ago
5 0

Answer:

x=\frac{9}{d-1},\:P=\frac{-297d+378}{\left(d-1\right)^2}+343

Step-by-step explanation:

Let us start by isolating x for dx = x + 9.

dx - x = x + 9 - x > dx - x = 9.

Factor out the common term of x > x(d - 1) = 9.

Now divide both sides by d - 1 > \frac{x\left(d-1\right)}{d-1}=\frac{9}{d-1};\quad \:d\ne \:1. Go ahead and simplify.

x=\frac{9}{d-1};\quad \:d\ne \:1.

Now, \mathrm{For\:}P=x+1x^2-34x+343, \mathrm{Subsititute\:}x=\frac{9}{d-1}.

P=\frac{9}{d-1}+1\cdot \left(\frac{9}{d-1}\right)^2-34\cdot \frac{9}{d-1}+343.

Group the like terms... 1\cdot \left(\frac{9}{d-1}\right)^2+\frac{9}{d-1}-34\cdot \frac{9}{d-1}+343.

\mathrm{Add\:similar\:elements:}\:\frac{9}{d-1}-34\cdot \frac{9}{d-1}=-33\cdot \frac{9}{d-1} > 1\cdot \left(\frac{9}{d-1}\right)^2-33\cdot \frac{9}{d-1}+343.

Now for 1\cdot \left(\frac{9}{d-1}\right)^2 > \mathrm{Apply\:exponent\:rule}: \left(\frac{a}{b}\right)^c=\frac{a^c}{b^c} > \frac{9^2}{\left(d-1\right)^2} = 1\cdot \frac{9^2}{\left(d-1\right)^2}.

\mathrm{Multiply:}\:1\cdot \frac{9^2}{\left(d-1\right)^2}=\frac{9^2}{\left(d-1\right)^2}.

Now for 33\cdot \frac{9}{d-1} > \mathrm{Multiply\:fractions}: \:a\cdot \frac{b}{c}=\frac{a\:\cdot \:b}{c} > \frac{9\cdot \:33}{d-1} > \frac{297}{d-1}.

Thus we then get \frac{9^2}{\left(d-1\right)^2}-\frac{297}{d-1}+343.

Now we want to combine fractions. \frac{9^2}{\left(d-1\right)^2}-\frac{297}{d-1}.

\mathrm{Compute\:an\:expression\:comprised\:of\:factors\:that\:appear\:either\:in\:}\left(d-1\right)^2\mathrm{\:or\:}d-1 > This\: is \:the\:LCM > \left(d-1\right)^2

\mathrm{For}\:\frac{297}{d-1}:\:\mathrm{multiply\:the\:denominator\:and\:numerator\:by\:}\:d-1 > \frac{297}{d-1}=\frac{297\left(d-1\right)}{\left(d-1\right)\left(d-1\right)}=\frac{297\left(d-1\right)}{\left(d-1\right)^2}

\frac{9^2}{\left(d-1\right)^2}-\frac{297\left(d-1\right)}{\left(d-1\right)^2} > \mathrm{Since\:the\:denominators\:are\:equal,\:combine\:the\:fractions}> \frac{a}{c}\pm \frac{b}{c}=\frac{a\pm \:b}{c}

\frac{9^2-297\left(d-1\right)}{\left(d-1\right)^2} > 9^2=81 > \frac{81-297\left(d-1\right)}{\left(d-1\right)^2}.

Expand 81-297\left(d-1\right) > -297\left(d-1\right) > \mathrm{Apply\:the\:distributive\:law}: \:a\left(b-c\right)=ab-ac.

-297d-\left(-297\right)\cdot \:1 > \mathrm{Apply\:minus-plus\:rules} > -\left(-a\right)=a > -297d+297\cdot \:1.

\mathrm{Multiply\:the\:numbers:}\:297\cdot \:1=297 > -297d+297 > 81-297d+297 > \mathrm{Add\:the\:numbers:}\:81+297=378 > -297d+378 > \frac{-297d+378}{\left(d-1\right)^2}

Therefore P=\frac{-297d+378}{\left(d-1\right)^2}+343.

Hope this helps!

You might be interested in
Una persona pensó hacer una obra en 15 días; pero tardó 10
Ivenika [448]

Answer:

<em>Trabajó 3 horas al día</em>

Step-by-step explanation:

<u>Proporcionalidad</u>

Una persona planeó terminar la obra en 15 dias, pero tardó 10 dias adicionales porque trabajó 2 horas menos por día.

Usaremos proporciones para calcular las horas de trabajo diarias.

Si 2 horas diarias representan 10 dias de atraso, entonces cada hora representa 5 dias de trabajo.

Si la obra tardaba 15 dias, entonces la persona trabajó 15/5 = 3 horas diarias.

8 0
3 years ago
the temper ire of chicken soup is 192.7 F as it cools the temperature of the soup decreases 2.3 what is the temperature of the s
ad-work [718]

The temperature of soup after 25 minutes is 135.2^{\circ}\ F

<em><u>Solution:</u></em>

The temperature of chicken soup is 192.7°F

As it cools, the temperature of the soup decreases 2.3°F per minute

Let the initial temperature be T_0

Let "t" be the time for rate of decrease

Set up an equation

Temperature = Initial temperature - decrease in temperature

Decrease in temperature = rate of decrease x time

Therefore,

T = T_0-2.3t

<em><u>To find the temperature of soup after 25 minutes, substitute t = 25</u></em>

T = 192.7 - 2.3 (25)\\\\T = 192.7 -57.5\\\\T = 135.2

Thus the temperature of soup after 25 minutes is 135.2^{\circ}\ F

5 0
3 years ago
What number would represent the outlier in the following set of data?
Stella [2.4K]
The answer is 29. Hope this helps.
7 0
3 years ago
Read 2 more answers
Click on the least amount of rainfall.
Andreas93 [3]

The least amount is the smallest amount, 1/8.

5 0
3 years ago
-1.8 - 6x = 6(0.1 + 3x)
Wittaler [7]

Answer:

x = -1/10 or -0.1

Step-by-step explanation:

-1.8 - 6x = 6(0.1 + 3x)

-1.8 - 6x = 0.6 + 18x

-6x - 18x = 0.6 + 1.8

-24x = 2.4

-x = 2.4/24

-x = 24/10 / 24

-x = 24/10 * 1/24

-x = 24/240

-x = 1/10

x = -0.1

7 0
3 years ago
Read 2 more answers
Other questions:
  • In some cities you can rent a car for ​$15 per day and ​$0.40 per mile. ​(a) find the cost of renting the car for one day and dr
    10·1 answer
  • The vertices of ΔABC are (-2,0), (-2, 3), and (-5, 1). T(x,y) = (x + 1, 3y) represents the transformation of the triangle. What
    9·1 answer
  • The side-by-side box plots show the ages of all Oscar winners for Best Actress (females) and Best Actor (males). Which of the fo
    11·2 answers
  • The midpoint of AB is M(-1, -2). If the coordinates of A are (1,3), what are the
    12·1 answer
  • Need help with this problem. Help me please!
    11·2 answers
  • What is the square root of 75 in simplest form
    13·1 answer
  • Dille.<br>.) In rectangle ABCD, AD= 7 and CD= 24. Find<br>BD.​
    13·1 answer
  • Solve this equation. <br> Leave the answer as an improper fraction. <br> 3x^2 + 2 = 11 - x^2
    14·1 answer
  • Can somebody help me on this ?
    6·1 answer
  • 8. Marvin has a board that's 15' 3/4" long. He cuts it in half. What is the length of both boards?​
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!