1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Gekata [30.6K]
4 years ago
9

P(x) = x + 1x² – 34x + 343 d(x)= x + 9

Mathematics
1 answer:
Feliz [49]4 years ago
5 0

Answer:

x=\frac{9}{d-1},\:P=\frac{-297d+378}{\left(d-1\right)^2}+343

Step-by-step explanation:

Let us start by isolating x for dx = x + 9.

dx - x = x + 9 - x > dx - x = 9.

Factor out the common term of x > x(d - 1) = 9.

Now divide both sides by d - 1 > \frac{x\left(d-1\right)}{d-1}=\frac{9}{d-1};\quad \:d\ne \:1. Go ahead and simplify.

x=\frac{9}{d-1};\quad \:d\ne \:1.

Now, \mathrm{For\:}P=x+1x^2-34x+343, \mathrm{Subsititute\:}x=\frac{9}{d-1}.

P=\frac{9}{d-1}+1\cdot \left(\frac{9}{d-1}\right)^2-34\cdot \frac{9}{d-1}+343.

Group the like terms... 1\cdot \left(\frac{9}{d-1}\right)^2+\frac{9}{d-1}-34\cdot \frac{9}{d-1}+343.

\mathrm{Add\:similar\:elements:}\:\frac{9}{d-1}-34\cdot \frac{9}{d-1}=-33\cdot \frac{9}{d-1} > 1\cdot \left(\frac{9}{d-1}\right)^2-33\cdot \frac{9}{d-1}+343.

Now for 1\cdot \left(\frac{9}{d-1}\right)^2 > \mathrm{Apply\:exponent\:rule}: \left(\frac{a}{b}\right)^c=\frac{a^c}{b^c} > \frac{9^2}{\left(d-1\right)^2} = 1\cdot \frac{9^2}{\left(d-1\right)^2}.

\mathrm{Multiply:}\:1\cdot \frac{9^2}{\left(d-1\right)^2}=\frac{9^2}{\left(d-1\right)^2}.

Now for 33\cdot \frac{9}{d-1} > \mathrm{Multiply\:fractions}: \:a\cdot \frac{b}{c}=\frac{a\:\cdot \:b}{c} > \frac{9\cdot \:33}{d-1} > \frac{297}{d-1}.

Thus we then get \frac{9^2}{\left(d-1\right)^2}-\frac{297}{d-1}+343.

Now we want to combine fractions. \frac{9^2}{\left(d-1\right)^2}-\frac{297}{d-1}.

\mathrm{Compute\:an\:expression\:comprised\:of\:factors\:that\:appear\:either\:in\:}\left(d-1\right)^2\mathrm{\:or\:}d-1 > This\: is \:the\:LCM > \left(d-1\right)^2

\mathrm{For}\:\frac{297}{d-1}:\:\mathrm{multiply\:the\:denominator\:and\:numerator\:by\:}\:d-1 > \frac{297}{d-1}=\frac{297\left(d-1\right)}{\left(d-1\right)\left(d-1\right)}=\frac{297\left(d-1\right)}{\left(d-1\right)^2}

\frac{9^2}{\left(d-1\right)^2}-\frac{297\left(d-1\right)}{\left(d-1\right)^2} > \mathrm{Since\:the\:denominators\:are\:equal,\:combine\:the\:fractions}> \frac{a}{c}\pm \frac{b}{c}=\frac{a\pm \:b}{c}

\frac{9^2-297\left(d-1\right)}{\left(d-1\right)^2} > 9^2=81 > \frac{81-297\left(d-1\right)}{\left(d-1\right)^2}.

Expand 81-297\left(d-1\right) > -297\left(d-1\right) > \mathrm{Apply\:the\:distributive\:law}: \:a\left(b-c\right)=ab-ac.

-297d-\left(-297\right)\cdot \:1 > \mathrm{Apply\:minus-plus\:rules} > -\left(-a\right)=a > -297d+297\cdot \:1.

\mathrm{Multiply\:the\:numbers:}\:297\cdot \:1=297 > -297d+297 > 81-297d+297 > \mathrm{Add\:the\:numbers:}\:81+297=378 > -297d+378 > \frac{-297d+378}{\left(d-1\right)^2}

Therefore P=\frac{-297d+378}{\left(d-1\right)^2}+343.

Hope this helps!

You might be interested in
Lou eat 6/8 of a pizza. what fraction of the in simplest form, Is left over?
vagabundo [1.1K]
If he ate 6/8 of the pizza, that means 2/8 is left.
2/8 simplify it, by dividing it by 2 and your answer is...
IT'S 1/4
3 0
3 years ago
Read 2 more answers
Solve for x please im kinda confused​
klio [65]

Answer:

x = 6

Step-by-step explanation:

Assuming the figure is a parallelogram then opposite sides are congruent, thus

3x - 6 = 12 ( add 6 to both sides )

3x = 18 ( divide both sides by 3 )

x = 6

3 0
3 years ago
WILL GIVE A BRAINLIEST
skelet666 [1.2K]
Find slope
slope betwen 2 points (x1,y1) and (x2,y2) is (y2-y1)/(x2-x1)

so
first make denoms same
denom is 10
(4/5,1/5) turns to (8/10,2/10)
(1/2,3/2) turns to (5/10,15/10)
slope=(15/10-2/10)/(5/10-8/10)=(13/10)/(-3/10)=13/-3=-13/3

use point slope
use (4/5,1/5)
y-y1=m(x-x1)
a point is (x1,y1) and slope is m
y-1/5=-13/3(x-4/5)
expand
wait, we don't need to do that, the only one with slope -13/3 is D
answer is D
4 0
3 years ago
A compass draws all points a given distance from a fixed point, thereby creating a locus of points for a circle.
Contact [7]
True......... ........


3 0
4 years ago
Read 2 more answers
Natalie sawed 5 boards of equal length to make a stool. Each was 9/10 of a meter long. What is the total length of the boards sh
STALIN [3.7K]
total length of the boards = 4 1/2 meters

Given:
number of boards = 5
length of each board = 9/10 meters

5 * 9/10 = (5*9)/10 = 45/10
Simplify fraction:
45/10 = 4 5/10 or 4 1/2 meters.
5 0
4 years ago
Other questions:
  • PLEASE HELP!!! NO ONE WILL HELP ME!! I WILL GIVE BRAINLIEST!!!1
    15·1 answer
  • Will give brainliest
    11·1 answer
  • A school conducts a recipe contest in which 1 student gets first place, 1 student gets second place, 1 student gets third place,
    5·2 answers
  • 9 - 3 ( 5 - 4 x ) =============
    9·2 answers
  • Need help with this question. It will be much appreciated
    14·1 answer
  • What is the same as 0.14
    14·2 answers
  • Express 1/3 as a repeating decimal and round to the nearest hundredth.
    10·1 answer
  • In the geometric sequence below, what is the common ratio?<br> 80, 40, 20, 10...
    8·1 answer
  • Diego has 48 chocolate chip cookies, 64 vanilla cookies, and 100 raisin cookies for a bake sale. He wants to make the greatest n
    12·1 answer
  • My username is kinda swag
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!