1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Gekata [30.6K]
3 years ago
9

P(x) = x + 1x² – 34x + 343 d(x)= x + 9

Mathematics
1 answer:
Feliz [49]3 years ago
5 0

Answer:

x=\frac{9}{d-1},\:P=\frac{-297d+378}{\left(d-1\right)^2}+343

Step-by-step explanation:

Let us start by isolating x for dx = x + 9.

dx - x = x + 9 - x > dx - x = 9.

Factor out the common term of x > x(d - 1) = 9.

Now divide both sides by d - 1 > \frac{x\left(d-1\right)}{d-1}=\frac{9}{d-1};\quad \:d\ne \:1. Go ahead and simplify.

x=\frac{9}{d-1};\quad \:d\ne \:1.

Now, \mathrm{For\:}P=x+1x^2-34x+343, \mathrm{Subsititute\:}x=\frac{9}{d-1}.

P=\frac{9}{d-1}+1\cdot \left(\frac{9}{d-1}\right)^2-34\cdot \frac{9}{d-1}+343.

Group the like terms... 1\cdot \left(\frac{9}{d-1}\right)^2+\frac{9}{d-1}-34\cdot \frac{9}{d-1}+343.

\mathrm{Add\:similar\:elements:}\:\frac{9}{d-1}-34\cdot \frac{9}{d-1}=-33\cdot \frac{9}{d-1} > 1\cdot \left(\frac{9}{d-1}\right)^2-33\cdot \frac{9}{d-1}+343.

Now for 1\cdot \left(\frac{9}{d-1}\right)^2 > \mathrm{Apply\:exponent\:rule}: \left(\frac{a}{b}\right)^c=\frac{a^c}{b^c} > \frac{9^2}{\left(d-1\right)^2} = 1\cdot \frac{9^2}{\left(d-1\right)^2}.

\mathrm{Multiply:}\:1\cdot \frac{9^2}{\left(d-1\right)^2}=\frac{9^2}{\left(d-1\right)^2}.

Now for 33\cdot \frac{9}{d-1} > \mathrm{Multiply\:fractions}: \:a\cdot \frac{b}{c}=\frac{a\:\cdot \:b}{c} > \frac{9\cdot \:33}{d-1} > \frac{297}{d-1}.

Thus we then get \frac{9^2}{\left(d-1\right)^2}-\frac{297}{d-1}+343.

Now we want to combine fractions. \frac{9^2}{\left(d-1\right)^2}-\frac{297}{d-1}.

\mathrm{Compute\:an\:expression\:comprised\:of\:factors\:that\:appear\:either\:in\:}\left(d-1\right)^2\mathrm{\:or\:}d-1 > This\: is \:the\:LCM > \left(d-1\right)^2

\mathrm{For}\:\frac{297}{d-1}:\:\mathrm{multiply\:the\:denominator\:and\:numerator\:by\:}\:d-1 > \frac{297}{d-1}=\frac{297\left(d-1\right)}{\left(d-1\right)\left(d-1\right)}=\frac{297\left(d-1\right)}{\left(d-1\right)^2}

\frac{9^2}{\left(d-1\right)^2}-\frac{297\left(d-1\right)}{\left(d-1\right)^2} > \mathrm{Since\:the\:denominators\:are\:equal,\:combine\:the\:fractions}> \frac{a}{c}\pm \frac{b}{c}=\frac{a\pm \:b}{c}

\frac{9^2-297\left(d-1\right)}{\left(d-1\right)^2} > 9^2=81 > \frac{81-297\left(d-1\right)}{\left(d-1\right)^2}.

Expand 81-297\left(d-1\right) > -297\left(d-1\right) > \mathrm{Apply\:the\:distributive\:law}: \:a\left(b-c\right)=ab-ac.

-297d-\left(-297\right)\cdot \:1 > \mathrm{Apply\:minus-plus\:rules} > -\left(-a\right)=a > -297d+297\cdot \:1.

\mathrm{Multiply\:the\:numbers:}\:297\cdot \:1=297 > -297d+297 > 81-297d+297 > \mathrm{Add\:the\:numbers:}\:81+297=378 > -297d+378 > \frac{-297d+378}{\left(d-1\right)^2}

Therefore P=\frac{-297d+378}{\left(d-1\right)^2}+343.

Hope this helps!

You might be interested in
Help please <br><br> look at picture <br><br> supplementary angles
8_murik_8 [283]

Answer:

x=16

Step-by-step explanation:

....,...................

5 0
3 years ago
Question is in the picture
MrRa [10]

Answer:

B)  12.5 ft

Step-by-step explanation:

set up a proportion of inches/feet equals inches/feet

let 'h' = height of sign

5.4/18 = 3.75/h

cross-multiply:

5.4h = 67.5

h = 12.5

5 0
2 years ago
The table shows some
valentinak56 [21]

Answer:

<u>For 1 quart of orange juice:</u>

Calories =  448

Vitamin C =  387.6 mg

Carbohydrates  = 107.56 mg

Step-by-step explanation:

The following information is given about 1 CUP of orange juice:

<h2>Calories</h2><h3>112</h3><h2>Vitamin C</h2><h3>96.9 mg</h3><h2>Carbohydrates</h2><h3>26.89 mg</h3>

Now, we have to estimate the 3 values for 1 quart of orange juice. Remember, 4 cups is 1 quart, so we need to multiply each value by 4 to get the values for 1 quart.

Calories = 112 * 4 = 448

Vitamin C = 96.9 * 4 = 387.6 mg

Carbohydrates = 26.89 * 4 = 107.56 mg

6 0
3 years ago
• Choose ALL the lines of symmetry for the letter I.
allsm [11]

Answer:

The answer is all of them.

Step-by-step explanation:

All of them can make a line of symmetry for the letter I

Hope this helps

7 0
3 years ago
Read 2 more answers
Suppose that f(x)=6x-1 and g(x)=-3x+8<br>solve f(x)=0
mina [271]
F(X)= (6x0) -1
F(x) = 0 -1 = -1
3 0
3 years ago
Other questions:
  • What is 1/4 of 24 solve using a tape diagram
    15·1 answer
  • Solve for x.<br> 8= 2x + 4
    15·2 answers
  • 1. estamate the sum
    5·2 answers
  • Which strategy would not correctly solve this story problem? Ryan hiked 12 miles on Friday, 20 miles on Saturday, and 8 miles on
    14·1 answer
  • Solve the inequality a/5 less than 1.
    9·2 answers
  • You borrow 125,000 for 25 years at an APR of 6.5%. What will be your monthly payment?
    10·1 answer
  • Write an equation that describes the function shown by the table
    12·1 answer
  • Write a quadratic equation with the given vertex.​
    5·1 answer
  • Please help this is due today!!!!!
    5·2 answers
  • What is the slope in the equation: y=4x+3<br>​
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!