The average power output:
P = V * I * t
V = 220 V, I = 15 A;
t = 2 ms * 200 = 400 ms = 0.4 s
P = 220 V * 15 A * 0.4 s
P = 1320 W ≈ 1.3 kW
Answer:
b. 1.3 kW
Answer:
B = 4.1*10^-3 T = 4.1mT
Explanation:
In order to calculate the strength of the magnetic field, you use the following formula for the magnetic flux trough a surface:
(1)
ФB: magnetic flux trough the circular surface = 6.80*10^-5 T.m^2
S: surface area of the circular plate = π.r^2
r: radius of the circular plate = 8.50cm = 0.085m
B: magnitude of the magnetic field = ?
α: angle between the direction of the magnetic field and the normal to the surface area of the circular plate = 43.0°
You solve the equation (1) for B, and replace the values of the other parameters:

The strength of the magntetic field is 4.1mT
Answer:
A.) 27000 kgm/s
18000 kgm/s
B.) Va = 22 m/s
C.) 19800 kgm/s
25200 kgm/s
Explanation: Given that the velocity of A and B are 30 m/s and 20 m/s. And of the same mass M = 9 × 10^5g
M = 9×10^5/1000 = 900 kg
A.) Initial momentum of A
Mu = 900 × 30 = 27000 kgm/s
Initial momentum of B
Mu = 900 × 20 = 18000 kgm/s
B.) if they have an accident and then the velocity of the B is 28 m/s, find out velocity of A.
Momentum before impact = momentum after impact
Given that Vb = 28 m/s
27000 + 18000 = 900Va + 900 × 28
45000 = 900Va + 25200
900Va = 45000 - 25200
900Va = 19800
Va = 19800/900
Va = 22 m/s
C.) Momentum of A after impact
MV = 900 × 22 = 19800 kgm/s
Momentum of B after impact
MV = 900 × 28 = 25200 kgm/s
Answer:
A) 199.78 J
B) 9.292x10^14 J
C) 4.2x10^7 m/s
D) 0.65 m
E) 1.13x10^-8 sec
D) 2.94x10^-9 sec
Explanation:
mass of ball = 0.0580 kg
A)
If smashed at v = 83.0 m/s, KE is
KE = 0.5mv^2
= 0.5 x 0.0580 x 83.0^2
= 199.78 J
B) if returned at v = 1.79×10^8 m/s, KE will be
KE = 0.5mv^2
= 0.5 x 0.0580 x (1.79×10^8)^2
= 9.292x10^14 J
C) during Einstein's return, velocity of rabbit relative to players is
Vr = 2.21×108 m/s
Rabbit's velocity relative to ball = 2.21×10^8 - 1.79×10^8
= 4.2x10^7 m/s
D) the rabbit's speed approaches the speed of light so we consider relativistic effect. The rabbit's measured distance is
l = l°( 1 - v^2/c^2)
= 2.5(1 - 2.21/3)
= 2.5 x 0.26
= 0.65 m
E) according to the players, the time taken by the rabbit is
t = d/v = 2.5/ 2.21×10^8
= 1.13x10^-8 sec
F) the time for rabbit as measured by rabbit is relativistic
t = t°( 1 - v^2/c^2)
= 1.13x10^-8 (1 - 2.21/3)
= 1.13x10^-8 x 0.26
= 2.94x10^-9 sec
Answer:
a. 900 J
b. 0.383
Explanation:
According to the question, the given data is as follows
Horizontal force = 150 N
Packing crate = 40.0 kg
Distance = 6.00 m
Based on the above information
a. The work done by the 150-N force is


= 900 J
b. Now the coefficient of kinetic friction between the crate and surface is


= .383
We simply applied the above formulas so that each one part could calculate