5.2m/s
Explanation:
Given parameters:
Mass of baseball = 0.15kg
Momentum of baseball = 0.78kgm/s
Unknown:
Speed of baseball = ?
Solution:
The momentum of the baseball is a function of the product of the mass and velocity. It is a vector quantity:
Momentum = mass x velocity
Since the speed of the ball is unknown:
Velocity =
= 
= 5.2m/s
The speed of the baseball before it lands is 5.2m/s
Learn more:
Momentum brainly.com/question/9484203
#learnwithBrainly
Answer:
h=17357.9m
Explanation:
The atmospheric pressure is just related to the weight of an arbitrary column of gas in the atmosphere above a given area. So, if you are higher in the atmosphere less gass will be over you, which means you are bearing less gas and the pressure is less.
To calculate this, you need to use the barometric formula:

Where R is the gas constant, M the molar mass of the gas, g the acceleration of gravity, T the temperature and h the height.
Furthermore, the specific gas constant is defined by:

Therefore yo can write the barometric formula as:

at the surface of the planet (h =0) the pressure is ![P_0[\tex]. The pressure at the height requested is half of that:[tex]P=\frac{P_0}{2}](https://tex.z-dn.net/?f=P_0%5B%5Ctex%5D.%20The%20pressure%20at%20the%20height%20requested%20is%20half%20of%20that%3A%3C%2Fp%3E%3Cp%3E%5Btex%5DP%3D%5Cfrac%7BP_0%7D%7B2%7D)
applying to the previuos equation:

solving for h:
h=17357.9m
Inertia is the correct answer!
Answer:
330 m/s approx
Explanation:
The RMS speed of a gas is proportional to square root of its absolute temperature is
V ( RMS ) ∝ √T

Here V₁ = 200 , T₁ = 23 +273 = 300K , T₂ = 227 +273 = 500 K
Putting the values
200 / V₂ = 
V₂ = 330 m/s approx
City 4 because it is closer to the equator