Answer:
v = 5.15 m/s
Explanation:
At constant velocity, the cable tension will equal the car weight of 984(9.81) = 9,653 N
As the cable tension is less than this value, the car must be accelerating downward.
7730 = 984(9.81 - a)
a = 1.95 m/s²
kinematic equations s = ut + ½at² and v = u + at
-5.00 = u(4.00) + ½(-1.95)4.00²
u = 2.65 m/s the car's initial velocity was upward at 2.65 m/s
v = 2.65 + (-1.95)(4.00)
v = -5.15 m/s
Answer:
See the answer below
Explanation:
1. Speed is calculated as the ratio of distance and time. Hence, Jame's speed can be calculated as:
400/5 km/hr = 80 km/hr
The unit for the speed would be km/hr. This can also be converted to m/s:
80 km = 80,000 m
1 hr = 3,600 s
80 km/hr = 80,000/3600 m/s = 22.22 m/s
2. Since James drove 400 km in 5 hours, the distance he drove is 400 km.
3. The time it took for James to get there is 5 hours.
Vector 1 has components


and vector 2 has


Add these vectors to get the resultant, which has components


The magnitude of the resultant is

with direction
such that

or about 50º N of E.