Answer:
E = 1.655 x 10⁷ N/C towards the filament
Explanation:
Electric field due to a line charge is given by the expression
E =
[/tex]
where λ is linear charge density of line charge , r is distance of given point from line charge and ε₀ is a constant called permittivity and whose value is
8.85 x 10⁻¹².
Putting the given values in the equation given above
E = 
E = 1.655 x 10⁷ N/C
From the graph, it can be seen that the constant force that John exerted in order to move the object is 14N. Work is calculated by multiplying the force with the distance to which the object moves in parallel with the direction of the force.
Work = Force x displacement
Work = (14 N) x (8 m)
Work = 112 J
The closest value is 110J. Thus, the answer to this item is the second choice.
The only balanced equation is B. If you look at the equation and break it down you can see that in:

→

Starting from the left side of the equation there are 2 Nitrogen atoms, and 2 oxygen atoms as indicated by the subscript.
To balance the equation, the number of atoms of each element in the right side equation should be equal to left. By putting the numerical coefficient of 2, you will distribute that to each element. So you will end up with 2 nitrogen atoms and 2 oxygen atoms on the left side of the equation. Thus, the equation is balanced.
The answer again, is B.