Specific Gravity of the fluid = 1.25
Height h = 28 in
Atmospheric Pressure = 12.7 psia
Density of water = 62.4 lbm/ft^3 at 32F
Density of the Fluid = Specific Gravity of the fluid x Density of water = 1.25 x 62.4
Density of the Fluid p = 78 lbm/ft^3
Difference in pressure as we got the differential height, dP = p x g x h dP = (78 lbm/ft^3) x (32.174 ft/s^2) x (28/12 ft) [ 1 lbf / 32.174 ft/s^2] [1 ft^2 /
144in^2]
Difference in pressure = 1.26 psia
(a) Pressure in the arm that is at Higher
P = Atmospheric Pressure - Pressure difference = 12.7 - 1.26 = 11.44 psia
(b) Pressure in the tank that is at Lower
P = Atmospheric Pressure + Pressure difference = 12.7 + 1.26 = 13.96psia
Answer:
Atoms are single neutral particles.
example: Ne, O
Molecules are neutral particles made of two or more atoms bonded together.
example:O2,HCl
Answer: The answer is 3000 K and Centauri A.
Explanation:
Just did it and got it right ♡´・ᴗ・`♡
Answer:
Groceries stay in the bag.
Explanation:
Given:
Maximum force = 250 N
Bag filled with = 20 kg
Lifted acceleration = 
Solution:
We need to calculate the exerted force on the grocery bag by using Newton's second law.

Where:
F = Exerted force on the object.
m = Mass of the object in kg
a = Acceleration of the object in 
Now, we substitute m = 20 kg and a =
in Newton's second law,


Since, the exerted force on the bag is less than 250 N, the groceries will stay in the bag.
Answer:
Explanation:
wavelength, λ = 3.4 m
wavelength, λ' = 3.3 m
Speed, v = 340 m/s
f = v / λ = 340 / 3.4 = 100 Hz
f' = v / λ' = 340 / 3.3 = 103.03 Hz
Frequency of beat, n = f' - f = 103.03 - 100 = 3.03 Hz