2(5) + 2 (z) = 10{3}
10 + 2z= 30
2z=20
z=10
Answer:
Explanation:
A ) Distance between two adjacent anti-node will be equal to distance between two adjacent nodes . So the required distance is 15 cm .
B ) wave-length, amplitude, and speed of the two traveling waves that form this pattern are as follows
wave length = same as wave length of wave pattern formed. so it is 30 cm
amplitude = 1/2 the amplitude of wave pattern formed so it is .850 / 2 = .425 cm
Speed = frequency x wavelength ( frequency = 1 / time period )
= 1 / .075) x 30 cm
400 cm / m
C ) maximum speed
= ω A
= (2π / T) x A
= 2 X 3.14 x .85 / .075 cm / s
= 71.17 cm / s
minimum speed is zero.
D ) The shortest distance along the string between a node and an antinode
= Wavelength / 4
= 30 / 4
= 7.5 cm
It's not the potential energy. It's just the potential.
It's greatest at the positive terminal of the battery or power supply.
Answer:
the Architect should use {!$FieldType.lead.accessible} expression within the Visualforce page.
Explanation:
Visualforce is a framework that allows developers to build complex, user friendly interfaces that can be hosted primarily on the Lightning Platform
Controllers provide access to the data that should be displayed in a page, and can modify component behavior. a number of standard controllers are provided by The Lightning platform that contain functionality and logic that which are used for standard Salesforce pages
The Architect should Use the expression {!$FieldType.lead.accessible} within the Visualforce page.
Answer:
The work required is -515,872.5 J
Explanation:
Work is defined in physics as the force that is applied to a body to move it from one point to another.
The total work W done on an object to move from one position A to another B is equal to the change in the kinetic energy of the object. That is, work is also defined as the change in the kinetic energy of an object.
Kinetic energy (Ec) depends on the mass and speed of the body. This energy is calculated by the expression:

where kinetic energy is measured in Joules (J), mass in kilograms (kg), and velocity in meters per second (m/s).
The work (W) of this force is equal to the difference between the final value and the initial value of the kinetic energy of the particle:


In this case:
- W=?
- m= 2,145 kg
- v2= 12

- v1= 25

Replacing:

W= -515,872.5 J
<u><em>The work required is -515,872.5 J</em></u>