7. solar flare: f.
8. core: h.
9. chromosphere: b.
10. sunspot: d.
11. corona: c.
12. nuclear fusion: j.
13. photosphere: a.
14. solar wind: g.
15. prominence: e.
16. radiation zone: k.
17. convection zone: i.
<h2>
It takes 6.78 seconds to complete 12 dribbles.</h2>
Explanation:
Frequency of dribble = 1.77 Hz
That is
Number of dribbles in 1 second = 1.77
Now we need to find how long does it take for you to complete 12 dribbles.
Time taken for 12 dribbles = 12 x Time taken for 1 dribble
Time taken for 12 dribbles = 12 x 0.565
Time taken for 12 dribbles = 6.78 seconds
It takes 6.78 seconds to complete 12 dribbles.
Answer:
12164.4 Nm
Explanation:
CHECK THE ATTACHMENT
Given values are;
m1= 470 kg
x= 4m
m2= 75kg
Cm = center of mass
g= acceleration due to gravity= 9.82 m/s^2
The distance of centre of mass is x/2
Center of mass(1) = x/2
But x= 4 m
Then substitute, we have,
Center of mass(1) = 4/2 = 2m
We can find the total torque, through the summation of moments that comes from both the man and the beam.
τ = τ(1) + τ(2)
But
τ(1)= ( Center of m1 × m1 × g)= (2× 470× 9.81)
= 9221.4Nm
τ(2)= X * m2 * g = ( 4× 75 × 9.81)= 2943Nm
τ = τ(1) + τ(2)
= 9221.4Nm + 2943Nm
= 12164.4 Nm
Hence, the magnitude of the torque about the point where the beam is bolted into place is 12164.4 Nm
Answer:
20 kg
Explanation:
remember the equation f=ma.
100 N=force
5 m/s2= acceleration
so you need to divide force by acceleration: 100 N/ 5 m/s2= 20 kg, to get the mass.
Answer:
W = 3.1 N
Explanation:
moments about any convenient point will sum to zero.
I choose summing about the knife edge mark and will assume the ruler of weight W is of uniform construction.
I will assume the ruler weight makes a positive moment
W[55 - 50) - 0.040(9.8)[ 95 - 55] = 0
5W = 15.68
W = 3.136