Explanation:
to set 1 container inside, without air movement. 1 outside in that location. compare the 2 containers to see which container has less or more fluid...
Answer:
I'm pretty sure that's right.
Explanation:
First, let's compute the number of moles in the system assuming ideal gas behavior.
PV = nRT
(663 mmHg)(1atm/760 mmHg)(60 L) = n(0.0821 L-atm/mol-K)(20+273 K)
Solving for n,
n = 2.176 moles
At standard conditions, the standard molar volume is 22.4 L/mol. Thus,
Standard volume = 22.4 L/mol * 2.176 mol =<em> 48.74 L</em>
Answer:
b) +2 and +3.
Explanation:
Hello,
In this case, given the molecular formulas:

And:

We can relate the subscripts with the oxidation states by knowing that they are crossed when the compound is formed, for that reason, we notice that oxygen oxidation state should be -2 for both cases and the oxidation state of X in the first formula must be +2 since both X and O has one as their subscript as they were simplified:

Moreover, for the second case the oxidation state of X should be +3 in order to obtain 3 as the subscript of oxygen:

Thus, answer is b)+2 and +3
Best regards.