Answer:
If an object has a higher density than the fluid it is in (fluid can mean liquid or gas), it will sink. If it has a lower density, it will float. Density is determined by an object's mass and volume. If two objects take up the same volume, but have one has more mass, then it also has a higher density.
Explanation:
The larger the piece the longer it will take to break down. This is because it has more mass that needs to be broken down. Thank you for posting your question here at brainly. I hope the answer will help you. Feel free to ask more questions.
Answer:
202 L
Explanation:
Step 1: Write the balanced equation
C₆H₁₂O₆ + 6 O₂(g) ⇒ 6 CO₂(g) + 6 H₂O(l)
Step 2: Calculate the moles corresponding to 270 g of C₆H₁₂O₆
The molar mass of C₆H₁₂O₆ is 180.16 g/mol.
270 g × 1 mol/180.16 g = 1.50 mol
Step 3: Calculate the moles of CO₂ generated from 1.50 moles of glucose
The molar ratio of C₆H₁₂O₆ to CO₂ is 1:6. The moles of CO₂ formed are 6/1 × 1.50 mol = 9.00 mol
Step 4: Calculate the volume of 9.00 moles of CO₂ at STP
The volume of 1 mole of an ideal gas at STP is 22.4 L.
9.00 mol × 22.4 L/mol = 202 L
I believe its B. <span>The chemical formula for water H2O represents 2 hydrogen and 1 oxygen in the compound. </span>
Answer:
Q = 7.0
Q = kc. The reaction is in equilibrium
Explanation:
Based on the reaction:
Br₂ + Cl₂ ⇄ 2BrCl
Equilibrium constant of the reaction, kc, is the ratio of <em>equilibrium concentrations</em> products over reactants powered to its reaction coefficient:
Kc = [BrCl]² / [Br₂] [Cl₂] = 7.0
Now, reaction quotient, Q, is write as the same Kc but the concentrations are actual concentrations:
Q = [BrCl]² / [Br₂] [Cl₂]
Replacing:
Q = [0.00415M]² / [0.00366M] [0.000672M]
Q = 7.0
Now, as Q = Kc = 7.0, the reaction mixture is in equilibrium